§1.2 Quadratic Equations

Quadratic Equation: an equation which can be written in the form $ax^2 + bx + c = 0$ where a, b, c are real numbers and $a \neq 0$. This is also called standard form.

1) Solving by Factoring

<u>Zero-Factor Property</u> - If a and b are complex numbers with ab = 0, then a = 0 or b = 0 or both.

Square Root Property - If $x^2 = k$, then $x = \pm \sqrt{k}$.

example: Solve by factoring

a)
$$x^2 + 6x = 0$$
 b) $2x^2 = x + 3$

c)
$$x^2 = 5$$
 d) $(x-2)^2 = 16$

2) Solving by Completing the Square

Start	Add	Result
$x^{2} + 4x$	4	$x^2 + 4x + 4 = (x + 2)^2$
$x^{2} + 12x$	36	$x^2 + 12x + 36 = (x + 6)^2$
$x^{2} - 6x$	9	$x^2 - 6x + 9 = (x - 3)^2$
$x^{2} + x$	$\frac{1}{4}$	$x^2 + x + \frac{1}{4} = \left(x + \frac{1}{2}\right)^2$

StartAddResult
$$x^2 + mx$$
 $\left(\frac{m}{2}\right)^2$ $x^2 + mx + \left(\frac{m}{2}\right)^2 = \left(x + \frac{m}{2}\right)^2$

Examples: Complete the Table

Start	Add	Result	Factored Form
$y^2 + 8y$			
$x^2 + 12x$			
$a^2 - 20a$			
p ² – 5p			

example: Solve(by completing the square) $x^2 + 5x + 4 = 0$

3) Solving Using the Quadratic Formula

The solutions of
$$ax^2 + bx + c = 0$$
 are

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}.$$

Note: The fraction bar in the quadratic formula extends under the –b term in the numerator.

example: Solve(by quadratic formula) $3x^2 - 5x + 1 = 0$