§1.3 Complex Numbers

Complex number: a number of the form $\mathrm{a}+\mathrm{bi}$, where a and b are real numbers. a is called the REAL part of the complex number a + bi, bi is called the IMAGINARY part of the complex number $\mathrm{a}+\mathrm{bi}$.

Imaginary number: a complex number of the form $a+b i$, where b is nonzero.

Standard Form of a complex number:
$a+b i \quad$ or $a+i b$
(Discuss $\mathrm{i} \sqrt{5} \& \sqrt{5 \mathrm{i}}$)

Definition of i :
 $$
\mathrm{i}=\sqrt{-1}
$$
 $$
\text { or } \quad i^{2}=-1
$$

Definition of $\sqrt{-a} \quad$ If $\mathrm{a}>0, \quad$ then $\sqrt{-\mathrm{a}}=\mathrm{i} \sqrt{\mathrm{a}}$
Example: $\sqrt{-16}$

Simplify
example 4:a) $\sqrt{-4}$
b) $\sqrt{-8}$

OPERATIONS WITH COMPLEX NUMBERS

Addition or Subtraction of Complex Numbers:

1. Combine the real parts.
2. Combine the imaginary parts.
3. Leave the result in the form a + bi.

Note: Add (or subtract) the real numbers then add the imaginary numbers.
example 1:
a) $(3+5 \mathrm{i})+(-2+3 \mathrm{i})$
b) $(6+4 \mathrm{i})-(3+6 \mathrm{i})$

Multiplication of Complex Numbers:

1. Multiply the numbers as if they are two binomials (FOIL METHOD).
2. Substitute -1 for i^{2}
3. Combine the like terms and leave the result in the form $\mathrm{a}+\mathrm{bi}$.
example $2: \mathrm{a})(5+3 \mathrm{i})(2+7 \mathrm{i})$
b) $(4+3 i)^{2}$

Properties of Complex Conjugates:
If $\mathrm{z}=\mathrm{a}+\mathrm{bi}$ then the conjugate $\overline{\mathrm{z}}=\mathrm{a}-\mathrm{bi}$:

$$
z \cdot \bar{z}=(a+b i)(a-b i)=a^{2}+b^{2}
$$

Division of Complex Numbers:

1. Write the division as a fraction.
2. Multiply the numerator and denominator by the conjugate of the denominator:

$$
\frac{\mathrm{a}+\mathrm{bi}}{\mathrm{c}+\mathrm{di}} \cdot \frac{\mathrm{c}-\mathrm{di}}{\mathrm{c}-\mathrm{di}}
$$

3. Multiply and simplify in the numerator (by FOIL). Multiply and simplify in the denominator to a real number (by FOIL).
4. Write the result in the form $\mathrm{a}+\mathrm{bi}$.
example 3 a) $\frac{1+4 \mathrm{i}}{5-12 \mathrm{i}}$
b) $\frac{2-3 i}{4-3 i}$
example 5: Solve $x^{2}-4 x+8$
