§1.5 Solving Inequalities

Interval Notation

Examples 1 Write in interval notation and graph. a.) $1 \leq x \leq 3$
b.) $-4<x<0$
c.) $x>5$
d.) $x \leq 1$

Properties of Inequalities - Let a, b and c be real numbers.
1.) $\mathrm{a}<\mathrm{b}$ and $\mathrm{a}+\mathrm{c}<\mathrm{b}+\mathrm{c}$ are equivalent. (addition property)
2.) If c >0, then $\mathrm{a}<\mathrm{b}$ and $\mathrm{ac}<\mathrm{bc}$ are equivalent.
(multiplication property)
3.) If $\mathrm{c}<0$, then $\mathrm{a}<\mathrm{b}$ and $\mathrm{ac}>\mathrm{bc}$ are equivalent.
(multiplication property) *
Note: Replacing < with >, \leq or \geq results in equivalent properties.

* Note: When multiplying or dividing both sides of the inequality by a negative number, we must reverse the direction of the inequality symbol.

Linear Inequalities: an inequality that can be written in the form $\mathbf{a x}+\mathbf{b}>\mathbf{0}$ where $\mathrm{a} \neq 0$. (Note: Any inequality symbol may be used $<,>, \leq, \geq$.)

Use the properties of inequalities to solve linear inequalities by isolating the variable.

Example 2 Solve.
a.) $3-2 x<5$
b.) $4 x+7 \geq 2 x-3$

Double Inequalities: Isolate the variable in the middle. Perform operations on each part of the inequality.
c.) $-5<3 x-2<1$

$$
\text { d.) }-1 \leq \frac{3-5 x}{2} \leq 9
$$

