§ 2.1 The Distance and Midpoint Formulas

- an ordered pair consists of two numbers where order (or sequence) is important.

Example $(1,2)$ and $(2,1)$ are different ordered pairs.
The Rectangular Coordinate System (or Cartesian coordinate system)

- the rectangular coordinate system has four quadrants (I, II, III, IV).
- the point $(0,0)$ is called the origin.
- points in the rectangular coordinate system are ordered pairs (x, y) where x and y are the coordinates of the point.

Example Plot the points $\mathrm{A}(4,3), \mathrm{B}(0,-5), \mathrm{C}(-2,1), \mathrm{D}(-1,-4)$ and $\mathrm{E}(3,-2)$.

The Distance Formula:

- the distance between two points $\mathrm{P}_{1}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right)$ and
$\mathrm{P}_{2}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right)$ is : $\mathrm{d}\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)=\sqrt{\left(\mathrm{x}_{2}-\mathrm{x}_{1}\right)^{2}+\left(\mathrm{y}_{2}-\mathrm{y}_{1}\right)^{2}}$
Example Find the distance $d\left(\mathrm{P}_{1}, \mathrm{P}_{2}\right)$ given $\mathrm{P}_{1}(-4,5)$ and $\mathrm{P}_{2}(3,2)$.

Midpoint Formula:

- the midpoint of the line segment PQ with endpoints

$$
\begin{aligned}
& \mathrm{P}\left(\mathrm{x}_{1}, \mathrm{y}_{1}\right) \text { and } \mathrm{Q}\left(\mathrm{x}_{2}, \mathrm{y}_{2}\right) \text { is } \\
& \mathrm{M}=\left(\frac{\mathrm{x}_{1}+\mathrm{x}_{2}}{2}, \frac{\mathrm{y}_{1}+\mathrm{y}_{2}}{2}\right)
\end{aligned}
$$

Note: the midpoint formula gives the coordinates of the midpoint not the distance (length) of it.

Example Find the midpoint of the line segment PQ given $\mathrm{P}(-5,5)$ and $\mathrm{Q}(3,1)$.

