§ 3.1 Functions

Relation: a set of ordered pairs. example:
$\{(4,5),(7,2),(8,11)\}$
Domain: - the x-values.
Function: a relation in which each element (number) in the domain corresponds to exactly one element (number) in the range. (Note: The elements in the Domain CANNOT repeat !)

Example:\{(1,2),(3,4),(5,4)\} IS THIS A FUNCTION ?

Example:\{(1,2),(1,3),(5,4)\} IS THIS A FUNCTION?

Function Notation: $f(x)$ is read "f of x " or "the function f evaluated at x ".

Independent variable: x is called the independent variable because it determines $f(x)$, which is the y-coordinate.

Dependent variable: y is called the dependent variable because it is determined by x .
(it depends on x)
Example: 1 Let $g(x)=3 \sqrt{x}, h(x)=1+4 x$, $k(x)=x^{2}+3$.

Find a) $g(16) \quad$ b) $h(3) \quad$ c) $k(b)$

Domain \& Range: (of a function)

1) If the function is in the form $y=\frac{P(x)}{Q(x)}$, solve $\mathrm{Q}(\mathrm{x})=0$. (This gives the restrictions on the value(s) of the variable (x)).
2) If the function is in the form $y=\sqrt{P(x)}$, solve the inequality $\mathrm{P}(\mathrm{x}) \geq 0$.

Example 2: State the Domain for each of the following:

a) $k(x)=\frac{3 x}{x-5}$
b) $h(x)=x^{2}+5 x$
c) $g(x)=\sqrt{x-2}$

Operations on Functions

If f and g are functions, then for all values of x for which both $\mathrm{f}(\mathrm{x})$ and $\mathrm{g}(\mathrm{x})$ exist,
the SUM of f and g is defined by:
$(f+g)(x)=f(x)+g(x)$
the DIFFERENCE of f and g is defined by:
$(\mathrm{f}-\mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x})-\mathrm{g}(\mathrm{x})$
the PRODUCT of f and g is defined by:
$(\mathrm{f} \bullet \mathrm{g})(\mathrm{x})=\mathrm{f}(\mathrm{x}) \cdot \mathrm{g}(\mathrm{x})$
the QUOTIENT of f and g is defined by:
$\left(\frac{f}{g}\right)(x)=\frac{f(x)}{g(x)}$, where $g(x) \neq 0$.
Example 1: Let $\mathrm{f}(\mathrm{x})=3 \mathrm{x}-5$, and $\mathrm{g}(\mathrm{x})=\mathrm{x}+1$ Find:
a) $(f+g)(x)$
b) $(\mathrm{f}-\mathrm{g})(\mathrm{x})$
c) $(\mathrm{f} \cdot \mathrm{g})(\mathrm{x})$
d) $(\mathrm{f} / \mathrm{g})(\mathrm{x})$
e) $(\mathrm{f}-\mathrm{g})(10)$.

