§3.5 Graphing Techniques: Transformations

 (Graphing Rules)Shifting Graphs (Rigid Translations) - given a function $y=f(x)$ and $c>0$
(1) the graph of $y=f(x)+c$ is the graph of $y=f(x)$ shifted up c units.
(2) the graph of $y=f(x)-c$ is the graph of $y=f(x)$ shifted down c units.
(3) the graph of $y=f(x+c)$ is the graph of $y=f(x)$ shifted left c units.
(4) the graph of $y=f(x-c)$ is the graph of $y=f(x)$ shifted right c units.

Example 1: Graph.
a.) $y=|x|+2$
b.) $y=|x|-2$
c.) $y=|x+2|$
d.) $y=|x-2|$

Reflecting Graphs - given a function $y=f(x)$
(1) the graph of $y=-f(x)$ is the graph of $y=f(x)$ reflected over the x-axis.
(2) the graph of $y=f(-x)$ is the graph of $y=f(x)$ reflected over the y-axis.
Example 2: Graph. a.) $y=-\sqrt{x} \quad$ b.) $y=\sqrt{-x}$

Narrowing and Broading (Non-Rigid Translations):

The graph of $g(x)=c * f(x)$ has the same general shape as the graph of $f(x)$.

1) It is narrowed vertically compared to the graph of $f(x)$ if $c>1$.
2) It is broadened vertically compared to the graph of $f(x)$ if $0<c<1$.

Example 3: Graph. a.) $\quad y=5|x| \quad$ b.) $\quad y=\frac{1}{2}|x|$
(Note: when an equation contains more than one shifting or reflecting rule, use steps (one rule at a time) and work from the inside of the function to the outside.)

