§5.1 Polynomial Functions and Models

A polynomial function is a function of the form

$$
f(x)=a_{n} x^{n}+a_{n-1} x^{n-1}+\ldots+a_{2} x^{2}+a_{1} x+a_{0}
$$

where $a_{n}, a_{n-1}, \ldots, a_{1}, a_{0}$ are real numbers and n is a nonnegative integer.

Determine which of the following are polynomial functions. For those that are, state the degree; for those that are not, tell why not.
(a) $f(x)=2-3 x^{4}$
(b) $g(x)=\sqrt{x}$
(c) $h(x)=\frac{x^{2}-2}{x^{3}-1}$
(d) $F(x)=0$
(e) $G(x)=8$
(f) $H(x)=-2 x^{3}(x-1)^{2}$

Summary of the Properties of the Graphs of Polynomial Functions

Degree	Form	Name	Graph
No degree	$f(x)=0$	Zero function	The x-axis
0	$f(x)=a_{0}, \quad a_{0} \neq 0$	Constant function	Horizontal line with y-intercept a_{0}
1	$f(x)=a_{1} x+a_{0}, \quad a_{1} \neq 0$	Linear function	Nonvertical, nonhorizontal line with slope a_{1} and y-intercept a_{0}
2	$f(x)=a_{2} x^{2}+a_{1} x+a_{0}, \quad a_{2} \neq 0$	Quadratic function	Parabola: Graph opens up if $a_{2}>0 ;$ graph opens down if $a_{2}<0$

(a) Graph of a polynomial function: smooth, continuous

(b) Cannot be the graph of a polynomial function

Polynomials are continuous (no breaks in the graph) and smooth (no sharp angles, only rounded curves)

Graphing Functions of the Form: $\quad P(x)=a x^{n}$

$\mathrm{P}(\mathrm{x})=\mathrm{x}^{3}$	$\mathrm{P}(\mathrm{x})=\mathrm{x}^{5}$	$\mathrm{P}(\mathrm{x})=\mathrm{x}^{4}$	$\mathrm{P}(\mathrm{x})=\mathrm{x}^{6}$
$\mathrm{P}(\mathrm{x})=\frac{1}{3} \mathrm{x}^{3}$	$\mathrm{P}(\mathrm{x})=8 \mathrm{x}^{5}$	$\mathrm{P}(\mathrm{x})=\frac{1}{8} \mathrm{x}^{4}$	$\mathrm{P}(\mathrm{x})=9 \mathrm{x}^{6}$

Note: The graph of $y=x^{n}$ is similar to the graph of $\left\{\begin{array}{l}y=x^{2} \text { if } n \text { is even } \\ y=x^{3} \text { if } n \text { is odd }\end{array}\right.$, except that the greater n is, the flatter the graph is on $[-1,1]$ and the steeper it is on $(-\infty,-1) \cup(1, \infty)$.

Examining Vertical and Horizontal Translations (Shifts):

Example 1: Graph
a.) $y=-(x+2)^{4}+6$
b.) $y=-3-(x-1)^{3}$

Finding a polynomial from its Zeros:
Example Find a polynomial of degree 3 whose zeros are $-4,-2$, and 3 .

Identifying Zeros and Their Multiplicities

For the polynomial, list all zeros and their multiplicities.

$$
f(x)=-2(x-2)(x+1)^{3}(x-3)^{4}
$$

If \boldsymbol{r} Is a Zero of Even Multiplicity

Sign of $f(x)$ does not change from one side Graph touches of r to the other side of r. x-axis at r.

If r Is a Zero of Odd Multiplicity

Sign of $f(x)$ changes from one side of r to the other side of r.

Graph crosses
 x-axis at r.

Theorem

Turning Points

If f is a polynomial function of degree n, then f has at most $n-1$ turning points.
If the graph of a polynomial function f has $n-1$ turning points, the degree of f is at least n.

Example Graphing a Polynomial using x-intercepts

For the polynomial: $f(x)=x^{2}(x-2)$
(a) Find the x - and y-intercepts of the graph of f.
(b) Use the x-intercepts to find the intervals on which the graph of f is above the x-axis and the intervals on which the graph of f is below the x-axis.
(c) Locate other points on the graph and connect all the points plotted with a smooth, continuous curve.

	0		?	
	Interval		$(-\infty, 0)$	
Number Chosen	-1	$(0,2)$	$(2, \infty)$	
Value of f	$f(-1)=-3$	$f(1)=-1$	$f(3)=9$	
Location of Graph	Below x-axis	Below x-axis	Above x-axis	
Point on Graph	$(-1,-3)$	$(1,-1)$	$(3,9)$	

