§ 6.1 Composite Functions

Composition of Functions:

If f and g are functions, then the composite function or composition, of g and f is:
$(g \circ f)(x)=g[f(x)]$ (Note: this is read " g of f of $x "$.)
for all x in the domain of f such that $f(x)$ is in the domain of g.

Example 1: Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{2}+3 \mathrm{x}-1 \& \mathrm{~g}(\mathrm{x})=2 \mathrm{x}+3$
Find $\left(\mathrm{f}^{\circ} \mathrm{g}\right)(\mathrm{x})$ and $\left(\mathrm{g}^{\circ} \mathrm{f}\right)(\mathrm{x})$.

Example 2: Let $\mathrm{f}(\mathrm{x})=2 \mathrm{x}^{2}-3$ and $\mathrm{g}(\mathrm{x})=4 \mathrm{x}$ Find $(f \circ g)(1)$ and $\left(g^{\circ} \mathrm{f}\right)(1)$ and $(f \circ \mathrm{f})(-2)$.

Show That Two Composite Functions Are Equal
Example 3:
If $f(x)=3 x-4$ and $g(x)=\frac{1}{3}(x+4)$
Show that $\left(\mathrm{f}^{\circ} \mathrm{g}\right)(\mathrm{x})$ and $\left(\mathrm{g}^{\circ} \mathrm{f}\right)(\mathrm{x})=\mathrm{x}$

