§6.2 One-to-One Functions; Inverse Functions

Example: Let f(x) = 8x and $g(x) = \frac{1}{8}x$

Find f(12) and g(96)? What do you notice about these results?

Horizontal Line Test:

A function f has a inverse function if and only if no horizontal line intersects the graph of f at more than one point.

Example: Do the following graphs of functions have inverses ?

Inverse Function (Verifying)

Let f and g be two functions such that: $(f \circ g)(x) = x$ for every x in the domain of g, and $(g \circ f)(x) = x$ for every x in the domain of f. The function g is the **inverse** of the function f and is

denoted by $f^{-1}(x)$ where

 $f(f^{-1}(x)) = x \text{ and } f^{-1}(f(x)) = x.$

Example: Let $f(x) = x^3 - 1$, and let $g(x) = \sqrt[3]{x+1}$. Is g the inverse of f?

What's the inverse of a function defined by a set of ordered pairs?

Find the inverse of: {(-3, -27), (-2, -8), (-1, -1), (2, 8), (3, 27)}

Graphs of Inverses:

(A graph and it's inverse are symmetric with respect to the line y = x.)

Finding the Inverse of a function: Note: the

notation used is: $f^{-1}(x)$

- (1) Replace f(x) with y.
- (2) Interchange the variables x and y.
- (3) Solve for y and let this "new" $y = f^{-1}(x)$
- (4) Verify that $f(f^{-1}(x)) = x$ and $f^{-1}(f(x)) = x$.

<u>Example</u> Find the inverse of the following functions.

a.)
$$f(x) = 2x - 1$$
 b.) $f(x) = \frac{4x + 6}{5}$