§6.2 One-to-One Functions; Inverse Functions
Example: Let $f(x)=8 x$ and $g(x)=\frac{1}{8} x$
Find $f(12)$ and $g(96)$? What do you notice about these results?

Horizontal Line Test:
A function f has a inverse function if and only if no horizontal line intersects the graph of f at more than one point.

Example: Do the following graphs of functions have inverses ?

Inverse Function (Verifying)

Let f and g be two functions such that:
$(f \circ g)(x)=x \quad$ for every x in the domain of g,
and $(g \circ f)(x)=x \quad$ for every x in the domain of f.

The function g is the inverse of the function f and is denoted by $\mathrm{f}^{-1}(\mathrm{x})$ where

$$
f\left(f^{-1}(x)\right)=x \text { and } f^{-1}(f(x))=x .
$$

Example: Let $\mathrm{f}(\mathrm{x})=\mathrm{x}^{3}-1$, and let $\mathrm{g}(\mathrm{x})=\sqrt[3]{\mathrm{x}+1}$. Is g the inverse of f ?

What's the inverse of a function defined by a set of ordered pairs?
Find the inverse of:
$\{(-3,-27),(-2,-8),(-1,-1),(2,8),(3,27)\}$

Graphs of Inverses:

(A graph and it's inverse are symmetric with respect to the line $\mathrm{y}=\mathrm{x}$.)

Finding the Inverse of a function: Note: the notation used is: $f^{-1}(x)$
(1) Replace $f(x)$ with y.
(2) Interchange the variables x and y.
(3) Solve for y and let this "new" $y=f^{-1}(x)$
(4) Verify that $f\left(f^{-1}(x)\right)=x$ and $f^{-1}(f(x))=x$.

Example Find the inverse of the following functions.
$\begin{array}{ll}\text { a.) } f(x)=2 \mathrm{x}-1 & \text { b.) } \mathrm{f}(\mathrm{x})=\frac{4 \mathrm{x}+6}{5}\end{array}$

