§6.3 Exponential Functions

Exponential Function:

If $\mathrm{a}>0, \mathrm{a} \neq 1$, and x is any real number, then

$$
\begin{aligned}
& \mathbf{f}(\mathbf{x})=\mathbf{a}^{\mathbf{x}} \text { defines the exponential function with } \\
& \text { base a. }
\end{aligned}
$$

Example 1: Evaluate the following exponential expressions with your calculator.
a) $2^{-3.1}$
b) 2^{π}

Graphing Exponential Functions

Graphs of the Form: $\quad f(x)=\mathbf{a}^{\mathbf{x}}$

1) The point $(0,1),(1, a),\left(-1, \frac{1}{a}\right)$ is on the graph.
2) If $\mathrm{a}>1$, f is an increasing function; If $0<\mathrm{a}<1$, f is an decreasing function.
3) The x-axis is a horizontal asymptote.
4) The domain is $(-\infty, \infty)$ and the range is $(0, \infty)$

Graph: $\mathrm{f}(\mathrm{x})=2^{\mathrm{x}} \quad \mathrm{g}(\mathrm{x})=2^{-\mathrm{x}} \quad \mathrm{h}(\mathrm{x})=-2^{\mathrm{x}}+3$

Horizontal Asymptote: The line in which a graph approaches (gets closer and closer to)

Increasing Function: A function where as x -values increase so do the y-values.

Decreasing Function: A function where as x -values increase y-values decrease.

Laws of Exponents?

Exponential Equations (TYPE 1)

Example 2: Solve
a) $\left(\frac{1}{3}\right)^{\mathrm{x}}=81$
b) $1.5^{\mathrm{x}+1}=\left(\frac{27}{8}\right)^{\mathrm{x}}$

The Natural Base e

Example 3: Use a calculator to evaluate each expression.
a) e^{-2}
b) e^{-1}
c) e^{1}
d) e^{2}

