§6.4 Logarithmic Functions

Logarithm :

For all real numbers y, and all positive numbers a and x , where $\mathrm{a} \neq 1$:

$$
y=\log _{a} x \quad \text { if and only if } x=a^{y} .
$$

Examples textbook.
Note that your calculator has the ability to evaluate two types of logs.

Common Logs $\log ($ base 10) $\quad->\log x$ Natural Logs $\quad \log ($ base e) $\quad->\ln x$

Example 1: Evaluating Logarithms on a Calculator
a) $\log _{10} 2.5$
b) $\log _{10}\left(\frac{1}{3}\right)$
c) $\ln 0.3$
d) $\ln (-1)$

Properties of Logarithms: (also true for natural logarithms)

$$
\begin{array}{ll}
\text { 1) } \log _{a} 1=0 & \text { because } a^{0}=1 \\
\text { 2) } \log _{a} a=1 & \text { because } a^{1}=a \\
\text { 3) } \log _{a} a^{x}=x & \text { because } a^{x}=a^{x} \\
\text { 4) } \log _{a} x=\log _{a} y \text {, then } x=y
\end{array}
$$

Graphs of the Form: $f(x)=\log _{a} x$

1) The points $(1,0),(a, 1),\left(\frac{1}{a},-1\right)$ is on the graph.
2) If $\mathrm{a}>1$, f is an increasing function; If $0<\mathrm{a}<1$, f is a decreasing function.
3) The y-axis is a vertical asymptote.
4) The domain is $(0, \infty)$ and the range is $(-\infty, \infty)$.

Examples: a) $\mathrm{y}=\log \mathrm{x}$
b) $y=\log _{2}(x-1)+3$
(Graph)

Solving Logarithmic Equations
Solve: a) $\log _{3}(4 x-7)=2$

Solve: b) $\quad \log _{x} 64=2$

Solve: c) $\quad e^{2 x}=5$

