§6.5 Properties of Logarithms

Properties of Logarithms:

(also true for natural logarithms)

1)
$$\log_a 1 = 0$$
 because $a^0 = 1$

2)
$$\log_a a = 1$$
 because $a^1 = a$

3)
$$\log_a a^x = x$$
 because $a^x = a^x$

4)
$$\log_a x = \log_a y$$
, then $x = y$

Example: Solve for x.

a)
$$\log_2 x = \log_2 3$$
 b) $\log_4 4 = x$ c) $\log_2 \frac{1}{8} = x$

Properties of Logarithms:

For any positive real numbers x and y, real number r, and any positive real number $a,(a \ne 1)$:

Product Rule

 $\log_a xy = \log_a x + \log_a y$ a)

Quotient Rule b) $\log_a \frac{x}{y} = \log_a x - \log_a y$

Power Rule

c) $\log_a x^r = r \log_a x$

Example: Rewrite the logarithm in terms of ln 2 and ln 3.

a) ln 6

b) $\ln \frac{2}{27}$

Example: Rewrite using the properties of logarithms.

a)
$$\log_{10} 5x^3y$$

b)
$$\ln \frac{\sqrt{3x-5}}{7}$$

Example: Rewrite in condensed form.

a)
$$\log_a 7 + 4 \log_a 3$$

b)
$$\frac{2}{3} \ln 8 - \ln (3^4 - 8)$$

Change of Base Formula:

Let a, b and x be positive real numbers such that $a \neq 1$ and $b \neq 1$. Then

$$\log_a x = \frac{\log_b x}{\log_b a} \qquad \left(\log_a x = \frac{\log_{10} x}{\log_{10} a} \quad \text{or} \quad \log_a x = \frac{\ln x}{\ln a}\right)$$

Example: Changing Bases Using Common Logarithms & Natural Logarithm

- a) $\log_4 30$ b) $\log_2 14$ c) $\log_4 30$ d) $\log_2 14$