§6.7 Compound Interest

Simple Interest Formula

If a principle of P dollars is borrowed for a period of t years at a per annum interest rate r, expressed as a decimal, the interest I charged is I = Prt

Formulas for Compound Interest:

After \mathbf{t} years, the balance \mathbf{A} in an account with principal \mathbf{P} and annual interest rate \mathbf{r} (in decimal form) is given by the following formulas:

1. For **n** compoundings per year:

$$A = P\left(1 + \frac{r}{n}\right)^{(n \cdot t)}$$

2. For continuous compounding:

$$A = Pe^{(r \cdot t)}$$

Example (future value): A total of \$12,000 is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:

a) quarterly.

b) continuously.

Compound Interest (rate of interest):

Example: What annual rate of interest compounded annually should you seek if you want to double your investment in 5 years?

Continuous Compounding:

Example: How long will it take for the money in an account that is compounded continuously at 5% to double? Triple?

§6.7 Compound Interest

Simple Interest Formula

If a principle of P dollars is borrowed for a period of t years at a per annum interest rate r, expressed as a decimal, the interest I charged is I = Prt

Formulas for Compound Interest:

After t years, the balance A in an account with principal **P** and annual interest rate **r** (in decimal form) is given by the following formulas:

1. For **n** compoundings per year: $A = P\left(1 + \frac{r}{n}\right)$

$$A = P\left(1 + \frac{r}{n}\right)^{(n \cdot t)}$$

2. For continuous compounding:

$$A = Pe^{(r \cdot t)}$$

Example (future value): A total of \$12,000 is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:

$$A = A = P(1+P(h,t))$$

$$A = P($$

b) continuously.

Compound Interest (rate of interest):

Example: What annual rate of interest compounded annually should you seek if you want to double your investment in 5 years?

double your investment in 5 years?

$$A = P(1+\frac{r}{n})^{(n+1)}$$

$$2P = P(1+\frac{r}{n})^{(1/5)}$$

$$5\sqrt{2} = 2\sqrt{1+r}$$

$$5\sqrt{2} = 1+r$$

$$r = \sqrt[5]{2} - 1$$

Continuous Compounding:

Example: How long will it take for the money in an account that is compounded continuously at 5% to double? Triple?

double? Triple?

$$A = Pe^{(r+t)}$$
 $2P = Pe^{(r+t)}$
 $2P = Pe^{(r+t)$