§6.7 Compound Interest

Simple Interest Formula

If a principle of P dollars is borrowed for a period of t years at a per annum interest rate r, expressed as a decimal, the interest I charged is $\quad \mathbf{I}=\mathbf{P r t}$

Formulas for Compound Interest:

After \mathbf{t} years, the balance \mathbf{A} in an account with principal \mathbf{P} and annual interest rate \mathbf{r} (in decimal form) is given by the following formulas:

1. For \mathbf{n} compoundings per year:

$$
\mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{(\mathrm{n} \cdot \mathrm{t})}
$$

2. For continuous compounding:
$\mathrm{A}=\mathrm{Pe}^{(\mathrm{r} \mathrm{t})}$
Example (future value): A total of $\$ 12,000$ is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:
a) quarterly.
b) continuously.

Compound Interest (rate of interest):

Example : What annual rate of interest compounded annually should you seek if you want to double your investment in 5 years?

Continuous Compounding:

Example : How long will it take for the money in an account that is compounded continuously at 5% to double ? Triple?

§6.7 Compound Interest

Simple Interest Formula

If a principle of P dollars is borrowed for a period of t years at a per annum interest rate r , expressed as a decimal, the interest I charged is $\quad \mathbf{I}=$ ert $P=1000 \quad r=.08 \quad t=5 \mathrm{I}=$

Formulas for Compound Interest:

After \mathbf{t} years, the balance \mathbf{A} in an account with principal \mathbf{P} and annual interest rate \mathbf{r} (in decimal form) is given by the following formulas:

1. For \mathbf{n} compounding per year:

$$
\begin{aligned}
& \mathrm{A}=\mathrm{P}\left(1+\frac{\mathrm{r}}{\mathrm{n}}\right)^{(\mathrm{n} \cdot \mathrm{t})} \\
& \mathrm{A}=\mathrm{Pe}^{(\mathrm{r} \mathrm{t})}
\end{aligned}
$$

Example (future value): A total of $\$ 12,000$ is invested at an annual interest rate of 9%. Find the balance after 5 years if it is compounded:
a) quarterly. $n=4$
$A=$
$A=$
$P=$
$n=$
$t=$
$r=$
$A=p\left(1+\frac{n}{n}\right)^{(n, t)}$
$=12000\left(1+\frac{.09}{4}\right)^{(4.5)}$

b) continuously.

$$
\begin{aligned}
A & =\rho v^{(.0)} \\
& =12000 e^{\wedge(.09 .5)} \\
& =188(9.7)
\end{aligned}
$$

Compound Interest (rate of interest):
Example: What annual rate of interest compounded annually should you seek if you want to double your investment in 5 years?

$$
\begin{aligned}
A & =P\left(1+\frac{r}{n}\right)^{(n \cdot t)} \\
\frac{2 P}{R} & =\frac{P\left(1+\frac{r}{1}\right)^{(1 \cdot 5)}}{R}
\end{aligned}
$$

$$
\begin{aligned}
2 & =\left((1+r)^{5}\right. \\
\sqrt[5]{2} & =\sqrt[5]{(1+r) x} \\
\sqrt[5]{2} & =1+r \\
r & =\sqrt[5]{2}-1
\end{aligned}
$$

Continuous Compounding:
Example: How long will it take for the money in an account that is compounded continuously at 5% to
double? Triple?

