Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12	Assignment: Practice Problems for Test 4 (NEW SP12)
Date:	Book: Sullivan: College Algebra, 8e		

1. Match the graph to one of the following functions.
A. $y=4^{x}$
B. $y=4^{-x}$
C. $y=-4^{x}$
D. $y=-4^{-x}$
E. $y=4^{x}-1$
F. $y=4^{x-1}$
G. $y=4^{1-x}$
H. $\mathrm{y}=1-4^{\mathrm{x}}$

Which function is represented by the graph?
\square (Type A, B, C, D, E, F, G, or H.)
2. Use transformations to identify the graph of the function. Then determine its domain, range, and horizontal asymptote.
$f(x)=2^{-x}-3$
Identify the graph of $f(x)=2^{-x}-3$.
$\bigcirc \mathrm{A}$

○в.

C.

D.

What is the domain of $f(x)=2^{-x}-3$?
\square (Type your answer in interval notation.)

What is the range of $f(x)=2^{-x}-3$?
\square (Type your answer in interval notation.)

What is the horizontal asymptote of $\mathrm{f}(\mathrm{x})=2^{-\mathrm{x}}-3$?
$\mathrm{y}=\square$

Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12 Bate:	Assignment: Practice Problems for Test 4 (NEW SP12)
Time:			

3. Use transformations to identify the graph of the function. Then determine its domain, range, and horizontal asymptote.
$\mathrm{f}(\mathrm{x})=3-e^{-\mathrm{x}}$
Identify the graph of $\mathrm{f}(\mathrm{x})=3-e^{-\mathrm{x}}$.
$\bigcirc \mathrm{A}$
A.

$\bigcirc B$
B.
$\bigcirc \mathrm{C}$

OD

What is the domain of $\mathrm{f}(\mathrm{x})=3-e^{-\mathrm{x}}$?(Type your answer in interval notation.)

What is the range of $f(x)=3-e^{-x}$?(Type your answer in interval notation.)

What is the horizontal asymptote of $\mathrm{f}(\mathrm{x})=3-e^{-\mathrm{x}}$?
$\mathrm{y}=\square$
4. Solve the equation.
$\left(\frac{3}{5}\right)^{x}=\left(\frac{27}{125}\right)$
$\mathrm{x}=\square$
(Simplify your answer. Type an integer or a fraction.)

Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12 Bate:	Assignment: Practice Problems for Test 4 (NEW SP12)
Time:			

5. Solve the equation.

$$
2^{4 x+1}=8
$$

$\mathrm{x}=\square$
(Simplify your answer. Type an integer or a fraction. Use a comma to separate answers as needed.)
6. Change the exponential expression to an equivalent expression involving a logarithm.

$$
3.4=a^{8}
$$

The equivalent logarithmic expression is \square
(Type an equation. Use integers or decimals for any numbers in the equation.)
7. Change the logarithmic expression to an equivalent expression involving an exponent.
$\log _{2} 16=x$
The equivalent exponential expression is \square (Type an equation.)
8. Find the exact value of the logarithm without using a calculator.
$\log _{4} 64$
$\boldsymbol{\operatorname { l o g }}_{4} 64=\square$
9. Find the domain of the function.

$$
f(x)=\ln (x-3)
$$

The domain of f is \square
(Type your answer in interval notation.)

Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12 Bate: Time:	Assignment: Practice Problems for Test 4 (NEW SP12)

10. Use a calculator to evaluate the expression.
$\frac{\frac{\ln \frac{24}{17}}{0.07}}{\frac{\ln \frac{24}{17}}{0.07} \approx \square \text { (Round your answer to three decimal places.) }}$
11. The graph of a logarithmic function is given. Match the graph to its function.

Which function matches the graph?
A. $y=\log _{4}(x-1)$B. $y=1-\log _{4} x$
C. $y=-\log _{4} x$
D. $y=\log _{4} x-1$
E. $y=-\log _{4}(-x)$F. $y=\log _{4}(-x)$G. $y=\log _{4} x$H. $y=\log _{4}(1-x)$
12. Solve the equation.

$$
\begin{aligned}
& \log _{4} \mathrm{x}=2 \\
& \mathrm{x}=\square
\end{aligned}
$$

13. Solve the equation.
$\log _{2}(7 \mathrm{x}+5)=4$
$\mathrm{x}=\square$ (Type an integer or a simplified fraction.)

Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12 Bate: Time:	Assignment: Practice Problems for Test 4 (NEW SP12)

14. Solve the equation.

$$
e^{8 x}=3
$$

$\mathrm{x}=\square$
(Type an exact answer.)
15. Use properties of logarithms to find the exact value of the expression. Do not use a calculator.
$\log _{6} 24-\log _{6} 4$
$\boldsymbol{\operatorname { l o g }}_{6} 24-\log _{6} 4=\square$ (Type an integer or a simplified fraction.)
16. Suppose that $\ln 2=r$ and $\ln 9=$ s. Use properties of logarithms to write the logarithm in terms of r and s .

$$
\ln 4.5
$$

$\ln 4.5=\square$
17. Write the expression as a sum and/or difference of logarithms. Express powers as factors.
$\log _{7}(343 \mathrm{x})$
$\boldsymbol{\operatorname { l o g }}_{7}(343 \mathrm{x})=\square$ (Type an exact answer in simplified form.)
18. Write the expression as a single logarithm.

$$
\frac{6 \log _{7} u+7 \log _{7} v}{6 \log _{7} u+7 \log _{7} v=\square \text { (Simplify your answer.) }}
$$

19. Write the expression as a single logarithm.

$$
\frac{\log _{4}\left(x^{2}-4\right)-5 \log _{4}(x+2)}{\log _{4}\left(x^{2}-4\right)-5 \log _{4}(x+2)=\square}
$$

(Simplify your answer.)

Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12 Bate:	Assignment: Practice Problems for Test 4 (NEW SP12)
Time:			

20
Use the change-of-base formula and a calculator to evaluate the logarithm.
$\log _{2} 14$
$\log _{2} 14=\square$
(Do not round until the final answer. Then round to the nearest thousandth as needed.)
21. Use the change-of-base formula and a calculator to evaluate the logarithm. Round your answer to three decimal places.
$\boldsymbol{\operatorname { l o g }}_{1 / 5} 7$
$\log _{1 / 5} 7 \approx \square$
(Do not round until the final answer. Then round to three decimal places as needed.)
22. Solve the following logarithmic equation.
$\log _{4}(3 x)=2$
Select the correct choice below and fill in any answer boxes in your choice.A. $x=$
(Simplify your answer. Type an exact answer, using radicals and log functions as needed. Use a comma to separate answers as needed.)B. There is no solution.
23. Solve the following logarithmic equation.
$3 \log _{2} x=-\log _{2} 8$
Select the correct choice below and fill in any answer boxes in your choice.A. $x=$
(Simplify your answer. Type an exact answer, using radicals and log functions as needed. Use a comma to separate answers as needed.)B. There is no solution.

Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12 Bate: Time:	Assignment: Practice Problems for Test 4 (NEW SP12)

24. Solve the following logarithmic equation.

$$
\log _{2}(x+11)+\log _{2}(x+18)=3
$$

Select the correct choice below and fill in any answer boxes in your choice.A. $\mathrm{x}=$
(Simplify your answer. Type an exact answer, using radicals and log functions as needed. Use a comma to separate answers as needed.)B. There is no solution.
25. Solve the equation.

$$
5^{x}=3
$$

Select the correct choice and fill in any answer boxes in your choice below.A. $\mathrm{x}=$
(Type an exact solution, using radicals and log functions as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.)B. There is no solution.
26. Solve the equation.

$$
6^{1-9 x}=5^{x}
$$

Select the correct choice and fill in any answer boxes in your choice below.$\mathrm{x}=$
(Type an exact solution, using radicals and log functions as needed. Use integers or fractions for any numbers in the expression. Use a comma to separate answers as needed.)B. There is no solution.
27. Find the amount that results from the given investment.
\$200 invested at 2\% compounded quarterly after a period of 2 years
After 2 years, the investment results in $\$ \square$.
(Round to the nearest cent as needed.)

Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12 Bate:	Assignment: Practice Problems for Test 4 (NEW SP12)
Time:			

28. If Tanisha has $\$ 100$ to invest at 8% per annum compounded quarterly, how long will it be before she has $S 150$? If the compounding is continuous, how long will it be?

Compounding quarterly, it will be about \square years before Tanisha has $\$ 150$.
(Round to two decimal places as needed.)
Compounding continuously, it will be about \square years before Tanisha has $\$ 150$.
(Round to two decimal places as needed.)

Student:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12	Assignment: Practice Problems for Test 4 (NEW SP12)
Time:		Cook: Sullivan: College Algebra, 8e	

1. G
2. | D | |
| :--- | :--- |
| | $(-\infty, \infty)$ |
| | $(-3, \infty)$ |
| | -3 |
3. | D | |
| :--- | :--- |
| $(-\infty, \infty)$ | |
| | $(-\infty, 3)$ |
| | 3 |
4. 3
5. $\frac{1}{2}$
6. $8=\log _{\mathrm{a}} 3.4$
7. $16=2^{x}$
8.3
8. $(3, \infty)$
9. 4.926
10. H
11. 16
12. $\frac{11}{7}$

Student: Date: Time:		Instructor: Keith Barrs Course: Math-1111-TR-12:30-SP12 Book: Sullivan: College Algebra, 8e	Assignment: Practice Problems for Test 4 (NEW SP12)
14.	$\ln 3$		
	8		
15.	1		
16.	$\mathrm{s}-\mathrm{r}$		
17.	$3+\log _{7} \mathrm{X}$		
18.	$\log _{7}\left(u^{6} v^{7}\right)$		
19.	$\log _{4}\left[\frac{(x-2)}{(x+2)^{4}}\right]$		
20.	3.807		
21.	-1.209		
22.	$\mathrm{A}, \frac{16}{3}$		
23.	$\mathrm{A}, \frac{1}{2}$		
24.	A, - 10		
25.	$\mathrm{A}, \frac{\ln 3}{\ln 5}$		
26.	$A, \frac{\ln 6}{9 \ln 6+\ln 5}$		
27.	208.14		

| Student: \quad | Instructor: Keith Barrs
 Course: Math-1111-TR-12:30-SP12
 Bate:
 Time: | Assignment: Practice Problems for Test 4
 (NEW SP12) |
| :--- | :--- | :--- | :--- |

$28 . \quad 5.12$
5.07

