§5.1 Polynomial Functions and Models

A polynomial function is a function of the form $f(x) = a_n x^n + a_{n-1} x^{n-1} + ... + a_2 x^2 + a_1 x + a_0$

where $a_n, a_{n-1}, ..., a_1, a_0$ are real numbers and n is a nonnegative integer.

Determine which of the following are polynomial functions. For those that are, state the degree; for those that are not, tell why not.

(a)
$$f(x) = 2 - 3x^4$$

(b)
$$g(x) = \sqrt{x}$$

(c)
$$h(x) = \frac{x^2 - 2}{x^3 - 1}$$

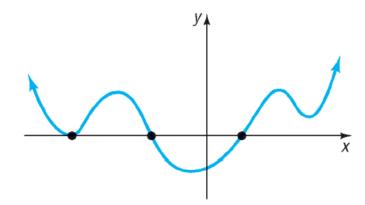
(d)
$$F(x) = 0$$

(e)
$$G(x) = 8$$

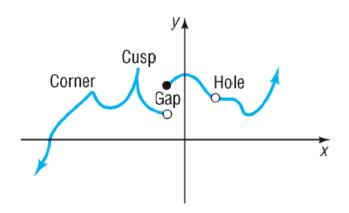
(f)
$$H(x) = -2x^3(x-1)^2$$

Summary of the Properties of the Graphs of Polynomial Functions

Degree	Form	Name	Graph
No degree	f(x) = 0	Zero function	The x-axis
0	$f(x) = a_0, a_0 \neq 0$	Constant function	Horizontal line with y-intercept a_0
1	$f(x) = a_1x + a_0, a_1 \neq 0$	Linear function	Nonvertical, nonhorizontal line with slope a_1 and y-intercept a_0
2	$f(x) = a_2x^2 + a_1x + a_0, a_2 \neq 0$	Quadratic function	Parabola: Graph opens up if $a_2 > 0$; graph opens down if $a_2 < 0$



(a) Graph of a polynomial function: smooth, continuous



(b) Cannot be the graph of a polynomial function

Polynomials are <u>continuous</u> (no breaks in the graph) and <u>smooth</u> (no sharp angles, only rounded curves)

Graphing Functions of the Form: $P(x) = ax^n$

$$P(x) = x^{3} P(x) = x^{5} P(x) = x^{4} P(x) = x^{6}$$

$$P(x) = \frac{1}{3}x^{3} P(x) = 8x^{5} P(x) = \frac{1}{8}x^{4} P(x) = 9x^{6}$$

Note: The graph of $y = x^n$ is similar to the graph of $\begin{cases} y = x^2 \text{ if n is even} \\ y = x^3 \text{ if n is odd} \end{cases}$, except that the greater n is, the flatter

the graph is on [-1, 1] and the steeper it is on $(-\infty, -1) \cup (1, \infty)$.

Examining Vertical and Horizontal Translations (Shifts):

Example 1: Graph

a.)
$$y = -(x + 2)^4 + 6$$

b.)
$$y = -3 - (x - 1)^3$$

Finding a polynomial from its Zeros:

Example Find a polynomial of degree 3 whose zeros are -4, -2, and 3.

Identifying Zeros and Their Multiplicities

For the polynomial, list all zeros and their multiplicities.

$$f(x) = -2(x-2)(x+1)^3(x-3)^4$$

If r Is a Zero of Even Multiplicity

Sign of f(x) does not change from one side of r to the other side of r.

Graph **touches** *x*-axis at *r*.

If r Is a Zero of Odd Multiplicity

Sign of f(x) changes from one side of r to the other side of r.

Graph **crosses** *x*-axis at *r*.

Theorem

Turning Points

If f is a polynomial function of degree n, then f has at most n-1 turning points.

If the graph of a polynomial function f has n-1 turning points, the degree of f is at least n.

Example Graphing a Polynomial using x-intercepts

For the polynomial: $f(x) = x^2(x - 2)$

- (a) Find the x- and y-intercepts of the graph of f.
- (b) Use the x-intercepts to find the intervals on which the graph of f is above the x-axis and the intervals on which the graph of f is below the x-axis.
- (c) Locate other points on the graph and connect all the points plotted with a smooth, continuous curve.

	0		<u>2</u> → x
Interval	$(-\infty, 0)$	(0, 2)	(2, ∞)
Number Chosen	-1	1	3
Value of f	f(-1) = -3	f(1) = -1	f(3) = 9
Location of Graph	Below x-axis	Below x-axis	Above x-axis
Point on Graph	(-1, -3)	(1, -1)	(3, 9)