§5.2 Properties of Rational Functions

Rational Function - a function of the form $f(x) = \frac{p(x)}{q(x)}$ where p(x) and q(x) are polynomials with q(x) \neq 0.

Find the Domain of a Rational Function The domain is the set of all real numbers where the denominator $\neq 0$.

- (a) The domain of $R(x) = \frac{2x^2 4}{x + 5}$ is the set of all real numbers x except -5; that is, $\{x | x \neq -5\}$.
- (b) The domain of $R(x) = \frac{1}{x^2 4}$ is the set of all real numbers x except -2 and 2, that is, $\{x | x \neq -2, x \neq 2\}$.
- (c) The domain of $R(x) = \frac{x^3}{x^2 + 1}$ is the set of all real numbers.
- (d) The domain of $R(x) = \frac{-x^2 + 2}{3}$ is the set of all real numbers.
- (e) The domain of $R(x) = \frac{x^2 1}{x 1}$ is the set of all real numbers x except 1, that is, $\{x | x \neq 1\}$.

It is important to observe that the functions

$$R(x) = \frac{x^2 - 1}{x - 1}$$
 and $f(x) = x + 1$

are not equal, since the domain of R is $\{x | x \neq 1\}$ and the domain of f is the set of all real numbers.

The graphs of rational functions approach (get closer and closer to) lines called <u>asymptotes</u>.

Basic Graphs (memorize these)

Example 1 Use stretching/shrinking, reflecting and shifting rules to graph the following.

a.)
$$f(x) = \frac{1}{x+3} - 1$$

b.) $f(x) = \frac{1}{(x-2)^2} + 1$

To Find the Asymptotes of a Rational Function:

(1) <u>Vertical Asymptotes</u> – When the function is in lowest terms you can find any vertical asymptotes by setting the denominator equal to 0 and solving for x to get the equation $\mathbf{x} = \mathbf{a}$.

(2) Horizontal Asymptotes

Rule 1: If the numerator has lower degree than the denominator, the horizontal asymptote is y = 0.

Rule 2: If the numerator and denominator have the <u>same degree</u> and a_n is the leading coefficient of the numerator and b_n is the leading coefficient of the

denominator, the horizontal asymptote is $y = \frac{a_n}{b_n}$.

Rule 3: If the numerator has higher degree than the denominator, there is **no horizontal asymptote**.

(3) <u>Slant Asymptotes</u> - If the numerator is of degree exactly one more than the denominator, there is an slant asymptote. To find it, <u>divide the numerator by</u> <u>the denominator and disregard any remainder</u>. The equation of the slant asymptote is the result of setting y = to the quotient. Example 2 Give the equations of the vertical, horizontal and/or slant asymptotes of the rational function.

a.)
$$f(x) = \frac{3x}{(x+1)(x-2)}$$
 b.) $f(x) = \frac{(x-5)(x-2)}{x^2+9}$
c.) $f(x) = \frac{2x^2+3}{x-4}$ d.) $f(x) = \frac{2(3x-1)(x+4)}{(x+2)(5x-3)}$

Example 3 Find the x-intercepts and y-intercept of the rational function.

a.)
$$f(x) = \frac{3x}{(x+1)(x-2)}$$
 b.) $f(x) = \frac{(x-5)(x-2)}{x^2+9}$