§7.5 Graphs of the Other Trigonometric Functions Graph of $y = \tan x$

X	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
tan x	undefined	-1	0	1	undefined

since the domain of $y = \tan x$ is all $(2n+1)\pi$ real numbers except graph repeats infinitely to the left and the right

one period (or cycle) of the graph is

Example 1: Graph a)
$$y = \tan \frac{x}{2}$$
 b) $y = -3\tan 2x$

$$y = \tan \frac{x}{2}$$

b)
$$y = -3\tan 2x$$

Graph of $y = \cot x$

X	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3\pi}{4}$	π
cot x	undefined	1	0	-1	undefined

since the domain of $y=\cot x$ is all real numbers except $n\pi$, the graph repeats infinitely to the left and the right

one period (or cycle) of the graph is on $[0,\pi]$

Example 2: Graph
$$y = 2 \cot \frac{x}{3}$$

Graph of $y = \csc(x)$

 X	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$y = \csc x$	undefined	1	undefined	-1	undefined

since the domain of $y = \csc x$ is all real numbers except $n\pi$, the graph repeats infinitely to the left and the right

one period (or cycle) of the graph is on $[0,2\pi]$

Graph of y = sec(x)

X	0	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π
$y = \sec x$	1	undefined	-1	undefined	1

since the domain of $y = \sec x$ is all real numbers except $\frac{(2n+1)\pi}{2}$, the graph repeats infinitely to the left and the right

one period (or cycle) of the graph is on $[0,2\pi]$

Example 3: Graph a)
$$y = 2\csc\left(x + \frac{\pi}{4}\right)$$
 b) $y = \sec(2x)$

Example:
$$y = \tan\left(\frac{x}{2}\right)$$

(Remember APTEV)

Formulas for General Form y = a tan(bx - c) + d

amplitude = none

period (of tan and cot) =

$$\frac{\pi}{b} = \frac{\pi}{1/2} = 2\pi$$

tick marks =
$$\frac{\text{period}}{4} = \frac{2\pi}{4} = \frac{\pi}{2}$$

endpoints

$$bx - c = \frac{-\pi}{2} \quad bx - c = \frac{\pi}{2}$$

$$\frac{x}{2} = \frac{-\pi}{2}$$

$$x = -\pi$$

$$x = \pi$$
(starts) (ends)

$$x = -\pi$$
 $x = \pi$

tick mark calculations:

$$(1) -\pi$$

(2)
$$-\pi + \frac{\pi}{2} = \frac{-\pi}{2}$$

(3)
$$\frac{-\pi}{2} + \frac{\pi}{2} = 0$$
 (4) $0 + \frac{\pi}{2} = \frac{\pi}{2}$

(4)
$$0 + \frac{\pi}{2} = \frac{\pi}{2}$$

$$(5) \frac{\pi}{2} + \frac{\pi}{2} = \pi$$

 $y = \tan\left(\frac{X}{2}\right)$

vertical shift = none

Example:
$$y = 2\cot\left(\frac{x}{3}\right)$$

(Remember APTEV)

Formulas for General Form $y = a \cot(bx - c) + d$

amplitude = none	amp	litude =	none
------------------	-----	----------	------

tick mark calculations:

period (of tan and cot) =

$$\frac{\pi}{b} = \frac{\pi}{1/3} = 3\pi$$

$$(2) \quad 0 + \frac{3\pi}{4} = \frac{3\pi}{4}$$

tick marks =
$$\frac{\text{period}}{4} = \frac{3\pi}{4}$$

$$(3) \quad \frac{3\pi}{4} + \frac{3\pi}{4} = \frac{3\pi}{2}$$

(4)
$$\frac{3\pi}{2} + \frac{3\pi}{4} = \frac{9\pi}{4}$$
(5)
$$\frac{9\pi}{4} + \frac{3\pi}{4} = 3\pi$$

endpoints Solve:

$$bx - c = 0 \qquad bx - c = \pi$$

$$\frac{x}{3} = 0$$

$$\frac{x}{3} = \pi$$

$$x = 0$$

$$x = 3\pi$$

$$\frac{x}{3} = 0$$

$$x = 0$$

$$x = 3\pi$$
(starts) (ends)

 $y = 2 \cot \left(\frac{x}{3}\right)$

vertical shift = none

Example:
$$y = 2\csc\left(x + \frac{\pi}{4}\right)$$

(Remember APTEV)

Formulas for General Form $y = a \sin(bx - c) + d$ and $y = a \cos(bx - c) + d$

amplitude = |a| = |2| = 2

tick mark calculations:

period (of sine and cosine) =

$$\frac{2\pi}{b} = \frac{2\pi}{1} = 2\pi$$

(1)
$$\frac{-\pi}{4}$$

(2) $\frac{-\pi}{4} + \frac{\pi}{2} = \frac{\pi}{4}$

(3)
$$\frac{\pi}{4} + \frac{\pi}{2} = \frac{3\pi}{4}$$

tick marks =
$$\frac{\text{period}}{4} = \frac{2\pi}{4} = \frac{\pi}{2}$$

$$(4) \frac{3\pi}{4} + \frac{\pi}{2} = \frac{5\pi}{4}$$

$$(5) \ \frac{5\pi}{4} + \frac{\pi}{2} = \frac{7\pi}{4}$$

endpoints Solve:

$$bx - c = 0$$

$$bx - c = 0 \qquad bx - c = 2\pi$$

$$x + \frac{\pi}{4} = 0 \qquad \qquad x + \frac{\pi}{4} = 2\pi$$

$$x + \frac{\pi}{4} = 2\pi$$

$$x = \frac{-\pi}{4}$$

$$x = \frac{-\pi}{4} \qquad \qquad x = 2\pi - \frac{\pi}{4} = \frac{7\pi}{4}$$

(ends)

Formulas for General Form $y = a \sin(bx - c) + d$ and $y = a \cos(bx - c) + d$

amplitude = |a| = |1| = 1

tick mark calculations:

period (of sine and cosine) =

(1) 0

(2) $0 + \frac{\pi}{4} = \frac{\pi}{4}$

(3) $\frac{\pi}{4} + \frac{\pi}{4} = \frac{\pi}{2}$

tick marks = $\frac{\text{period}}{4} = \frac{\pi}{4}$

 $(4) \quad \frac{\pi}{2} + \frac{\pi}{4} = \frac{3\pi}{4}$

(5) $\frac{3\pi}{4} + \frac{\pi}{4} = \pi$

endpoints Solve:

bx - c = 0 $bx - c = 2\pi$

 $2x = 0 \qquad 2x = 2\pi$

(ends) (starts)

Y = Sec(2x)

1 Sec (2x-0)+0

vertical shift = d = none