§7.5 Graphs of the Other Trigonometric Functions
Graph of $\mathbf{y}=\boldsymbol{\operatorname { t a n }} \mathbf{x}$

x	$\frac{-\pi}{2}$	$\frac{-\pi}{4}$	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$
$\tan \mathrm{x}$	undefined	-1	0	1	undefined

since the domain of $y=\tan x$ is all real numbers except $\frac{(2 n+1) \pi}{2}$,the graph repeats infinitely to the left and the right
one period (or cycle) of the graph is on $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$
Example 1: Graph
a) $y=\tan \frac{x}{2}$
b) $y=-3 \tan 2 x$

Graph of $y=\cot x$

x	0	$\frac{\pi}{4}$	$\frac{\pi}{2}$	$\frac{3 \pi}{4}$	π
$\cot \mathrm{x}$	undefined	1	0	-1	undefined

since the domain of $y=\cot x$ is all real numbers except $n \pi$, the graph repeats infinitely to the left and the right
one period (or cycle) of the graph is on $[0, \pi]$

Example 2: \quad Graph $y=2 \cot \frac{x}{3}$

Graph of $y=\csc (x)$

x	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\mathrm{y}=\csc \mathrm{x}$	undefined	1	undefined	-1	undefined

since the domain of $y=\csc x$ is all real numbers except $n \pi$, the graph repeats infinitely to the left and the right
one period (or cycle) of the graph is on $[0,2 \pi]$

Graph of $\mathbf{y}=\sec (\mathbf{x})$

x	0	$\frac{\pi}{2}$	π	$\frac{3 \pi}{2}$	2π
$\mathrm{y}=\sec \mathrm{x}$	1	undefined	-1	undefined	1

since the domain of $y=\sec x$ is all real numbers except $\frac{(2 \mathrm{n}+1) \pi}{2}$, the graph repeats infinitely to the left and the right
one period (or cycle) of the graph is on $[0,2 \pi]$

Example 3: Graph a) $y=2 \csc \left(x+\frac{\pi}{4}\right) \quad$ b) $y=\sec (2 x)$

Example: $y=\tan \left(\frac{x}{2}\right)$

Formulas for General Form $y=a \tan (b x-c)+d$

amplitude $=$ none	tick mark calculations:
period $($ of tan and cot $)=$	(1) $-\pi$ (2) $-\pi+\frac{\pi}{2}=\frac{-\pi}{2}$
$\frac{\pi}{b}=\frac{\pi}{1 / 2}=2 \pi$	(3) $\frac{-\pi}{2}+\frac{\pi}{2}=0$ (4) $0+\frac{\pi}{2}=\frac{\pi}{2}$
$\text { tick marks }=\frac{\text { period }}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}$	(5) $\frac{\pi}{2}+\frac{\pi}{2}=\pi$
endpoints Solve: $\begin{array}{ll} b x-c=\frac{-\pi}{2} & b x-c=\frac{\pi}{2} \\ \frac{x}{2}=\frac{-\pi}{2} & \frac{x}{2}=\frac{\pi}{2} \\ x=-\pi & x=\pi \\ \text { (starts) } & \text { (ends) } \end{array}$	$\begin{aligned} y= & \tan \left(\frac{x}{2}\right) \\ & 1 \tan \left(\frac{1}{2} x-0\right)+0 \end{aligned}$
vertical shift $=$ none	

Example: $y=2 \cot \left(\frac{x}{3}\right)$
(Remember APTEV)

Formulas for General Form $\quad y=a \cot (b x-c)+d$

amplitude $=$ none	tick mark calculations:
	(1) 0
period $($ of tan and cot $)=$	(2) $0+\frac{3 \pi}{4}=\frac{3 \pi}{4}$
$\frac{\pi}{b}=\frac{\pi}{1 / 3}=3 \pi$	(3) $\frac{3 \pi}{4}+\frac{3 \pi}{4}=\frac{3 \pi}{2}$
	(4) $\frac{3 \pi}{2}+\frac{3 \pi}{4}=\frac{9 \pi}{4}$
$\text { tick marks }=\frac{\text { period }}{4}=\frac{3 \pi}{4}$	(5) $\frac{9 \pi}{4}+\frac{3 \pi}{4}=3 \pi$
endpoints Solve:	$y=2 \cot \left(\frac{x}{3}\right)$
$b x-c=0 \quad b x-c=\pi$	$2 \cot \left(\frac{1}{3} x-0\right)+0$
$\frac{x}{x}=0 \quad \underline{x}=$	$a \times \mathrm{n}^{\text {b }}$,
$\overline{3}=0 \quad \overline{3}=\pi$	$\begin{aligned} & y \\ & 2+0 \end{aligned}$
$\mathrm{x}=0 \quad \mathrm{x}=3 \pi$,
(starts) (ends)	$0 \frac{3 \pi}{4} \frac{3 \pi}{2} \frac{4 \pi}{4} 3$
vertical shift $=$ none	

Example: $\mathrm{y}=2 \csc \left(\mathrm{x}+\frac{\pi}{4}\right)$
(Remember APTEV)

Formulas for General Form $y=a \sin (b x-c)+d$ and $y=a \cos (b x-c)+d$

$\text { amplitude }=\|a\|=\|2\|=2$ period $($ of sine and cosine $)=$ $\frac{2 \pi}{\mathrm{~b}}=\frac{2 \pi}{1}=2 \pi$ $\text { tick } \text { marks }=\frac{\text { period }}{4}=\frac{2 \pi}{4}=\frac{\pi}{2}$	tick mark calculations: (1) $\frac{-\pi}{4}$ (2) $\frac{-\pi}{4}+\frac{\pi}{2}=\frac{\pi}{4}$ (3) $\frac{\pi}{4}+\frac{\pi}{2}=\frac{3 \pi}{4}$ (4) $\frac{3 \pi}{4}+\frac{\pi}{2}=\frac{5 \pi}{4}$ (5) $\frac{5 \pi}{4}+\frac{\pi}{2}=\frac{7 \pi}{4}$
$\begin{array}{lc} \hline \text { endpoints } & \text { Solve: } \\ \mathrm{bx}-\mathrm{c}=0 & \mathrm{bx}-\mathrm{c}=2 \pi \\ \mathrm{x}+\frac{\pi}{4}=0 & \mathrm{x}+\frac{\pi}{4}=2 \pi \\ \mathrm{x}=\frac{-\pi}{4} & \mathrm{x}=2 \pi-\frac{\pi}{4}=\frac{7 \pi}{4} \\ \text { (starts) } & \text { (ends) } \end{array}$	
vertical shift $=\mathrm{d}=$ none	

Example: $y=\sec (2 x)$
Formulas for General Form $\mathrm{y}=\mathrm{a} \sin (\mathrm{bx}-\mathrm{c})+\mathrm{d}$ and $\mathrm{y}=\mathrm{a} \cos (\mathrm{bx}-\mathrm{c})+\mathrm{d}$

