Student:		Instructor: Keith Barrs	Assignment: Sample Test 3
Date:			
Time:		Course: Math 1113 Book: Sullivan: Precalculus, 8e	

1. Find the exact value of the following expression within the interval $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$ $\sin ^{-1} \frac{\sqrt{3}}{2}$
$\sin ^{-1} \frac{\sqrt{3}}{2}=\square$
(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression. Type N if there is no solution.)
2. Use a calculator to find the value of the following expression rounded to two decimal places.
$\cos ^{-1} \frac{2}{3}$
$\cos ^{-1} \frac{2}{3}=\square$
(Type your answer in radians. Round to the nearest hundredth as needed.)
3. Find the exact value of the following expression.
$\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)$
$\sin ^{-1}\left(\sin \frac{5 \pi}{4}\right)=\square$
(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression. Type N if there is no solution.)
4.

Find the exact value, if any, of the composite function. Do not use a calculator.
$\cos \left(\cos ^{-1} \frac{7}{9}\right)$
$\boldsymbol{\operatorname { c o s }}\left(\boldsymbol{\operatorname { c o s }}^{-1} \frac{7}{9}\right)=\square$ (Type N if there is no solution.)

Student:		Instructor: Keith Barrs Cate: Time:	Course: Math 1113 Book: Sullivan: Precalculus, 8e

5.

Find the exact value of the expression.
$\csc \left[\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)\right]$
$\csc \left[\sin ^{-1}\left(\frac{\sqrt{2}}{2}\right)\right]=\square$
(Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators.)
6. Find the exact value of the expression.
$\cos ^{-1}\left(\cos \frac{11 \pi}{6}\right)$
$\cos ^{-1}\left(\cos \frac{11 \pi}{6}\right)=\square$
(Simplify your answer. Type an exact answer, using π as needed. Use integers or fractions for any numbers in the expression. Type N if there is no solution.)
7. Find the exact value of the expression.
$\tan \left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]$
$\boldsymbol{\operatorname { t a n }}\left[\sin ^{-1}\left(-\frac{1}{2}\right)\right]=\square$
(Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators.)
8. \quad Find the exact value of the expression.
$\cot \left[\cos ^{-1}\left(\frac{\sqrt{5}}{6}\right)\right]$
$\cot \left[\cos ^{-1}\left(\frac{\sqrt{5}}{6}\right)\right]=\square$
(Simplify your answer. Type an exact answer, using radicals as needed. Rationalize all denominators.)

Student:		Instructor: Keith Barrs Course: Math 1113 Bate: Time: Sullivan: Precalculus, 8e	Assignment: Sample Test 3

9.

Multiply $\frac{\sin \theta}{1-\cos \theta}$ by $\frac{1+\cos \theta}{1+\cos \theta}$. Type your answer in terms of sine and/or cosine.

$$
\frac{\sin \theta}{1-\cos \theta} \cdot \frac{1+\cos \theta}{1+\cos \theta}=\square \text { (Simplify your answer.) }
$$

10.

$$
\text { Multiply and simplify } \frac{(\sin \theta+\cos \theta)(\sin \theta+\cos \theta)-1}{\sin \theta \cos \theta} .
$$

$$
\frac{(\sin \theta+\cos \theta)(\sin \theta+\cos \theta)-1}{\sin \theta \cos \theta}=\square
$$

(Use integers or fractions for any numbers in the expression.)
11.

Establish the identity.

$$
(\tan \theta+\cot \theta) \sin \theta=\sec \theta
$$

Which of the following shows the key steps in establishing the identity?
A.

$$
(\tan \theta+\cot \theta) \sin \theta=\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}\right) \sin \theta=\cot \theta+1=\sec \theta
$$

B.

$$
(\tan \theta+\cot \theta) \sin \theta=\sin \theta \tan \theta+\sin \theta\left(\frac{\sec \theta}{\sin \theta}\right)=\cot \theta+1=\sec \theta
$$

$$
(\tan \theta+\cot \theta) \sin \theta=\left(\frac{\sin ^{2} \theta+\cos ^{2} \theta}{\cos \theta \sin \theta}\right) \sin \theta=\left(\frac{1}{\cos \theta \sin \theta}\right) \sin \theta=\sec \theta
$$

D.

$$
(\tan \theta+\cot \theta) \sin \theta=\left(\frac{\sin ^{2} \theta \cos ^{2} \theta}{\cos \theta \sin \theta}\right) \sin \theta=\left(\frac{1}{\cos \theta \sin \theta}\right) \sin \theta=\sec \theta
$$

Student:		Instructor: Keith Barrs Course: Math 1113 Bate: Time:	Assignment: Sample Test 3

12.

Establish the identity.

$$
(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=1
$$

Which of the following statements establishes the identity?
A. $(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=\tan ^{2} \theta-\sec ^{2} \theta=1$

○
B. $(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=\left(\frac{1}{\cos \theta}+\frac{1}{\cot \theta}\right)\left(\frac{1}{\cos \theta}-\frac{1}{\cot \theta}\right)$

$$
=\left(\frac{1}{\cos \theta \cot \theta}\right)\left(\frac{1}{\cos \theta \cot \theta}\right)=1
$$

C. $(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=\sec ^{2} \theta-2 \sec \theta \tan \theta-\tan ^{2} \theta=1$

OD. $(\sec \theta+\tan \theta)(\sec \theta-\tan \theta)=\sec ^{2} \theta-\tan ^{2} \theta=1$
13.

Establish the identity.

$$
\frac{2 \csc \theta}{\sec \theta}+\frac{3 \cos \theta}{\sin \theta}=5 \cot \theta
$$

Which of the following statements establishes the identity?A. $\frac{2 \csc \theta}{\boldsymbol{\operatorname { s e c }} \theta}+\frac{3 \cos \theta}{\boldsymbol{\operatorname { s i n }} \theta}=\frac{2 / \cos \theta}{1 / \sin \theta}+\frac{3 \cos \theta}{\boldsymbol{\operatorname { s i n }} \theta}=\frac{2 \boldsymbol{\operatorname { s i n }} \theta}{\boldsymbol{\operatorname { c o s }} \theta}+\frac{3 \cos \theta}{\boldsymbol{\operatorname { s i n }} \theta}=2 \boldsymbol{\operatorname { c o t } \theta} \theta+3 \boldsymbol{\operatorname { c o t } \theta} \theta=5 \boldsymbol{\operatorname { c o t } \theta}$B. $\frac{2 \boldsymbol{\operatorname { c s c }} \theta}{\boldsymbol{\operatorname { s e c }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s } \theta}}{\boldsymbol{\operatorname { s i n }} \theta}=\frac{2 / \boldsymbol{\operatorname { s i n }} \theta}{1 / \boldsymbol{\operatorname { c o s }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s } \theta} \theta}{\boldsymbol{\operatorname { s i n }} \theta}=\frac{2 \boldsymbol{\operatorname { s i n }} \theta}{\boldsymbol{\operatorname { c o s }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s } \theta}}{\boldsymbol{\operatorname { s i n }} \theta}=2 \boldsymbol{\operatorname { c o t }} \theta+3 \boldsymbol{\operatorname { c o t } \theta} \theta=5 \boldsymbol{\operatorname { c o t }} \theta$
C. $\frac{2 \boldsymbol{\operatorname { c s c }} \theta}{\boldsymbol{\operatorname { s e c }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s } \theta} \theta}{\boldsymbol{\operatorname { s i n }} \theta}=\frac{2 / \boldsymbol{\operatorname { s i n }} \theta}{1 / \boldsymbol{\operatorname { c o s }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s }} \theta}{\boldsymbol{\operatorname { s i n }} \theta}=\frac{2 \boldsymbol{\operatorname { c o s }} \theta}{\boldsymbol{\operatorname { s i n }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s }} \theta}{\boldsymbol{\operatorname { s i n }} \theta}=2 \boldsymbol{\operatorname { c o t } \theta} \theta+3 \boldsymbol{\operatorname { c o t } \theta} \theta=5 \boldsymbol{\operatorname { c o t } \theta}$D. $\frac{2 \boldsymbol{\operatorname { c s c }} \theta}{\boldsymbol{\operatorname { s e c }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s }} \theta}{\boldsymbol{\operatorname { s i n }} \theta}=\frac{2 / \boldsymbol{\operatorname { c o s } \theta} \theta}{1 / \boldsymbol{\operatorname { s i n }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s } \theta} \theta}{\boldsymbol{\operatorname { s i n }} \theta}=\frac{2 \boldsymbol{\operatorname { c o s }} \theta}{\boldsymbol{\operatorname { s i n }} \theta}+\frac{3 \boldsymbol{\operatorname { c o s } \theta}}{\boldsymbol{\operatorname { s i n }} \theta}=2 \boldsymbol{\operatorname { c o t }} \theta+3 \boldsymbol{\operatorname { c o t } \theta} \theta=5 \boldsymbol{\operatorname { c o t } \theta}$

Student:		Instructor: Keith Barrs Course: Math 1113	Assignment: Sample Test 3
Date:			
Time:	Book: Sullivan: Precalculus, 8e		

14.

Establish the identity.

$$
\frac{\csc \theta-\sin \theta}{\csc \theta+\sin \theta}=\frac{\cos ^{2} \theta}{1+\sin ^{2} \theta}
$$

Which of the following statements establishes the identity? (A, B, C, or D)
A.

$$
\frac{\boldsymbol{\operatorname { c s c }} \theta-\boldsymbol{\operatorname { s i n }} \theta}{\boldsymbol{\operatorname { c s c }} \theta+\sin \theta}=\frac{\frac{1}{\sin \theta}-\boldsymbol{\operatorname { s i n }} \theta}{\frac{1}{\sin \theta}+\sin \theta}=\frac{\frac{1-\cos ^{2} \theta}{\cos \theta}}{\frac{1+\boldsymbol{\operatorname { c o s }}^{2} \theta}{\cos \theta}}=\frac{1-\boldsymbol{\operatorname { s i n }}^{2} \theta}{1+\sin ^{2} \theta}=\frac{\boldsymbol{\operatorname { c o s }}^{2} \theta}{1+\sin ^{2} \theta}
$$

B.

$$
\frac{\boldsymbol{\operatorname { c s c }} \theta-\sin \theta}{\boldsymbol{\operatorname { c s c }} \theta+\sin \theta}=\frac{\frac{1}{\cos \theta}-\cos \theta}{\frac{1}{\cos \theta}+\cos \theta}=\frac{\frac{1-\sin ^{2} \theta}{\sin \theta}}{\frac{1+\sin ^{2} \theta}{\sin \theta}}=\frac{1-\sin ^{2} \theta}{1+\sin ^{2} \theta}=\frac{\cos ^{2} \theta}{1+\sin ^{2} \theta}
$$

$$
\frac{\boldsymbol{\operatorname { c s c }} \theta-\boldsymbol{\operatorname { s i n }} \theta}{\boldsymbol{\operatorname { c s c }} \theta+\sin \theta}=\frac{\frac{1}{\boldsymbol{\operatorname { c o s }} \theta}-\boldsymbol{\operatorname { c o s }} \theta}{\frac{1}{\cos \theta}+\cos \theta}=\frac{\frac{1-\cos ^{2} \theta}{\boldsymbol{\operatorname { c o s }} \theta}}{\frac{1+\cos ^{2} \theta}{\cos \theta}}=\frac{1-\boldsymbol{\operatorname { s i n }}^{2} \theta}{1+\sin ^{2} \theta}=\frac{\boldsymbol{\operatorname { c o s }}^{2} \theta}{1+\sin ^{2} \theta}
$$

○.

$$
\frac{\boldsymbol{\operatorname { c s c }} \theta-\sin \theta}{\boldsymbol{\operatorname { c s c }} \theta+\sin \theta}=\frac{\frac{1}{\sin \theta}-\sin \theta}{\frac{1}{\sin \theta}+\sin \theta}=\frac{\frac{1-\sin ^{2} \theta}{\sin \theta}}{\frac{1+\sin ^{2} \theta}{\sin \theta}}=\frac{1-\sin ^{2} \theta}{1+\sin ^{2} \theta}=\frac{\cos ^{2} \theta}{1+\sin ^{2} \theta}
$$

15. Use a sum or difference formula to find the exact value of the trigonometric function.
$\sin 75^{\circ}$

$\sin 75^{\circ}=\square$

(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
16. Find the exact value of the expression.
$\sin 40^{\circ} \cos 5^{\circ}+\cos 40^{\circ} \sin 5^{\circ}$
$\sin 40^{\circ} \cos 5^{\circ}+\cos 40^{\circ} \sin 5^{\circ}=\square$
(Type an exact answer, using radicals as needed.)

Student:		Instructor: Keith Barrs Course: Math 1113 Bate: Time:	Assignment: Sample Test 3

17.

Find the exact value of each of the following under the given conditions:

$$
\boldsymbol{\operatorname { t a n }} \alpha=-\frac{4}{3}, \frac{\pi}{2}<\alpha<\pi ; \quad \cos \beta=\frac{3}{4}, 0<\beta<\frac{\pi}{2}
$$

(a) $\sin (\alpha+\beta)$
(b) $\cos (\alpha+\beta)$
(c) $\sin (\alpha-\beta)$
(d) $\tan (\alpha-\beta)$
(a) $\sin (\alpha+\beta)=$
(Type an exact answer using radicals as needed. Use integers or fractions for any numbers in the expression. Simplify your answer.)
(b) $\cos (\alpha+\beta)=\square$
(Type an exact answer using radicals as needed. Use integers or fractions for any numbers in the expression. Simplify your answer.)
(c) $\sin (\alpha-\beta)=\square$
(Type an exact answer using radicals as needed. Use integers or fractions for any numbers in the expression. Simplify your answer.)
(d) $\boldsymbol{\operatorname { t a n }}(\alpha-\beta)=\square$
(Type an exact answer using radicals as needed. Use integers or fractions for any numbers in the expression. Do not rationalize the denominator. Simplify your answer.)
18.

Establish the identity.
$\cos \left(\frac{3 \pi}{2}+\theta\right)=\sin \theta$

Choose the sequence of steps below that verifies the identity.$\boldsymbol{\operatorname { c o s }}\left(\frac{3 \pi}{2}+\theta\right)=\boldsymbol{\operatorname { c o s }} \frac{\pi}{2} \boldsymbol{\operatorname { c o s }} \theta+\boldsymbol{\operatorname { s i n }} \frac{\pi}{2} \boldsymbol{\operatorname { s i n }} \theta=(0) \boldsymbol{\operatorname { c o s }} \theta+(1) \sin \theta=\boldsymbol{\operatorname { s i n }} \theta$$\boldsymbol{\operatorname { c o s }}\left(\frac{3 \pi}{2}+\theta\right)=\boldsymbol{\operatorname { c o s }} \frac{\pi}{2} \cos \theta-\sin \frac{\pi}{2} \sin \theta=(0) \cos \theta-(1) \sin \theta=\sin \theta$
○c.
$\boldsymbol{\operatorname { c o s }}\left(\frac{3 \pi}{2}+\theta\right)=\boldsymbol{\operatorname { c o s }} \frac{3 \pi}{2} \boldsymbol{\operatorname { c o s }} \theta+\sin \frac{3 \pi}{2} \sin \theta=(0) \cos \theta+(-1) \sin \theta=\sin \theta$
○
$\boldsymbol{\operatorname { c o s }}\left(\frac{3 \pi}{2}+\theta\right)=\boldsymbol{\operatorname { c o s }} \frac{3 \pi}{2} \cos \theta-\sin \frac{3 \pi}{2} \sin \theta=(0) \cos \theta-(-1) \sin \theta=\sin \theta$

Student:	Instructor: Keith Barrs	Assignment: Sample Test 3	
Date:			
Time:		Course: Math 1113 Book: Sullivan: Precalculus, 8e	

19.

Use the information given about the angle $\theta, \cos \theta=-\frac{\sqrt{3}}{4}, \frac{\pi}{2}<\theta<\pi$, to find the exact values of the following.
(a) $\sin (2 \theta)$
(b) $\cos (28)$
(c) $\boldsymbol{\operatorname { s i n }} \frac{\theta}{2}$
(d) $\cos \frac{\theta}{2}$
(a) $\boldsymbol{\operatorname { s i n }}(2 \theta)=\square$ (Type an exact answer, using radicals as needed.)
(b) $\boldsymbol{\operatorname { c o s }}(28)=\square$ (Type an exact answer, using radicals as needed.)
(c) $\boldsymbol{\operatorname { s i n }} \frac{\theta}{2}=\square$ (Type an exact answer, using radicals as needed.)
(d) $\boldsymbol{\operatorname { c o s }} \frac{\theta}{2}=\square$ (Type an exact answer, using radicals as needed.)
20.

Use the half-angle formulas to find the exact value of the trigonometric function $\sin 112.5^{\circ}$.
$\boldsymbol{\operatorname { s i n }} 112.5^{\circ}=\square$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
21.

> Use the half-angle formulas to find the exact value of the trigonometric function $\boldsymbol{\operatorname { t a n }}\left(-\frac{7 \pi}{8}\right)$
$\boldsymbol{\operatorname { t a n }}\left(-\frac{7 \pi}{8}\right)=\square$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Student:		Instructor: Keith Barrs Course: Math 1113 Bate: Time:	Assignment: Sample Test 3

22.

Establish the identity.

$$
2 \sin ^{3} \theta \cos \theta+2 \sin \theta \cos ^{3} \theta=\sin (2 \theta)
$$

Choose the sequence of steps below that verifies the identity.A. $2 \sin ^{3} \theta \cos \theta+2 \sin \theta \cos ^{3} \theta=\left(2 \cos ^{2} \theta+\sin ^{2} \theta\right)(\sin \theta \cos \theta)=1 \cdot \sin (2 \theta)=\boldsymbol{\operatorname { s i n }}(2 \theta)$B. $2 \boldsymbol{\operatorname { s i n }}^{3} \theta \boldsymbol{\operatorname { c o s }} \theta+2 \boldsymbol{\operatorname { s i n }} \theta \boldsymbol{\operatorname { c o s }}^{3} \theta=\left(\boldsymbol{\operatorname { c o s }}^{2} \theta+\boldsymbol{\operatorname { s i n }}^{2} \theta\right)(2 \boldsymbol{\operatorname { s i n }} \theta \boldsymbol{\operatorname { c o s }} \theta)=1 \cdot \boldsymbol{\operatorname { s i n }}(2 \theta)=\boldsymbol{\operatorname { s i n }}(2 \theta)$C. $2 \sin ^{3} \theta \cos \theta+2 \sin \theta \cos ^{3} \theta=\left(\boldsymbol{\operatorname { c o s }}^{2} \theta+\sin ^{2} \theta\right)\left(2 \sin ^{2} \theta+1\right)=1 \cdot \boldsymbol{\operatorname { s i n }}(2 \theta)=\boldsymbol{\operatorname { s i n }}(2 \theta)$D. $2 \sin ^{3} \theta \cos \theta+2 \boldsymbol{\operatorname { s i n }} \theta \cos ^{3} \theta=\left(\cos ^{2} \theta-\sin ^{2} \theta\right)(2 \sin \theta \cos \theta)=1 \cdot \boldsymbol{\operatorname { s i n }}(2 \theta)=\boldsymbol{\operatorname { s i n }}(2 \theta)$
23. Express the given product as a sum containing only sines or cosines.
$\cos (78) \cos (98)$
$\boldsymbol{\operatorname { c o s }}(78) \cos (98)=\square$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)
24.

Express the given sum or difference as a product of sines and/or cosines.

$$
\cos \frac{\theta}{2}-\cos \frac{7 \theta}{2}
$$

$\boldsymbol{\operatorname { c o s }} \frac{\theta}{2}-\boldsymbol{\operatorname { c o s }} \frac{7 \theta}{2}=\square$
(Simplify your answer, including any radicals. Use integers or fractions for any numbers in the expression.)

Student:		Instructor: Keith Barrs Course: Math 1113 Bate: Time:	Assignment: Sample Test 3

25.

Establish the identity.

$$
\frac{\cos \theta+\cos (3 \theta)}{2 \cos (2 \theta)}=\cos \theta
$$

Choose the correct sequence of steps to establish the identity.A. $\frac{\cos \theta+\cos (3 \theta)}{2 \cos (2 \theta)}=\frac{2 \sin (2 \theta) \sin \theta}{2 \cos (2 \theta)}=\cos \theta$

$$
\frac{\cos \theta+\cos (3 \theta)}{2 \cos (2 \theta)}=\frac{2 \sin (2 \theta) \cos \theta}{2 \cos (2 \theta)}=\cos \theta
$$C. $\frac{\cos \theta+\cos (3 \theta)}{2 \cos (2 \theta)}=\frac{2 \cos (2 \theta) \cos \theta}{2 \cos (2 \theta)}=\cos \theta$D. $\frac{\cos \theta+\cos (3 \theta)}{2 \cos (2 \theta)}=\frac{-2 \sin \theta \cos (2 \theta)}{2 \cos (2 \theta)}=\cos \theta$

26.

Establish the identity $\frac{\boldsymbol{\operatorname { s i n }}(88)+\boldsymbol{\operatorname { s i n }}(4 \theta)}{\boldsymbol{\operatorname { c o s }}(88)+\boldsymbol{\operatorname { c o s }}(4 \theta)}=\boldsymbol{\operatorname { t a n }}(68)$.

Which of the following statements establishes the identity?
A.

$$
\frac{\sin (8 \theta)+\sin (4 \theta)}{\cos (8 \theta)+\cos (4 \theta)}=\frac{2 \sin \frac{8 \theta+4 \theta}{2} \cos \frac{8 \theta-4 \theta}{2}}{2 \cos \frac{8 \theta+4 \theta}{2} \cos \frac{8 \theta-4 \theta}{2}}=\frac{\sin \frac{8 \theta+4 \theta}{2}}{\cos \frac{8 \theta+4 \theta}{2}}=\boldsymbol{\operatorname { t a n } (6 \theta)}
$$

B.

$$
\frac{\sin (8 \theta)+\sin (4 \theta)}{\cos (8 \theta)+\cos (4 \theta)}=\frac{2 \sin \frac{8 \theta-4 \theta}{2} \cos \frac{8 \theta+4 \theta}{2}}{2 \cos \frac{8 \theta-4 \theta}{2} \cos \frac{8 \theta+4 \theta}{2}}=\frac{\sin \frac{8 \theta-4 \theta}{2}}{\cos \frac{8 \theta-4 \theta}{2}}=\tan (6 \theta)
$$

C.

$$
\frac{\boldsymbol{\operatorname { s i n }}(8 \theta)+\sin (4 \theta)}{\boldsymbol{\operatorname { c o s }}(8 \theta)+\cos (4 \theta)}=\frac{2 \sin \frac{8 \theta-4 \theta}{2} \cos \frac{8 \theta+4 \theta}{2}}{2 \cos \frac{8 \theta+4 \theta}{2} \cos \frac{8 \theta-4 \theta}{2}}=\frac{\sin \frac{8 B+4 \theta}{2}}{\cos \frac{8 \theta+4 \theta}{2}}=\boldsymbol{\operatorname { t a n }}(6 \theta)
$$

Student:		Instructor: Keith Barrs Course: Math 1113 Bate: Time:	Assignment: Sample Test 3

1. $\frac{\pi}{3}$
2. 0.84
3. $-\frac{\pi}{4}$
4. $\frac{7}{9}$
5. $\sqrt{2}$
6. $\frac{\pi}{6}$
7. $-\frac{\sqrt{3}}{3}$
8. $\frac{\sqrt{155}}{31}$
9. $\frac{1+\cos \theta}{\sin \theta}$
10. 2
11. C
12. D
13. C
14. D
15. $\frac{1}{4}(\sqrt{6}+\sqrt{2})$

Student:		Instructor: Keith Barrs Course: Math 1113 Date: Time:	Assignment: Sample Test 3

16. $\quad \frac{\sqrt{2}}{2}$
17. $\frac{12-3 \sqrt{7}}{20}$
$\frac{-9-4 \sqrt{7}}{20}$
$\frac{12+3 \sqrt{7}}{20}$
$-\frac{12+3 \sqrt{7}}{9-4 \sqrt{7}}$
18. D
19. $-\frac{\sqrt{39}}{8}$
$-\frac{5}{8}$
$\frac{1}{2} \sqrt{\frac{4+\sqrt{3}}{2}}$
$\frac{1}{2} \sqrt{\frac{4-\sqrt{3}}{2}}$
20. $\frac{\sqrt{2+\sqrt{2}}}{2}$
21. $\sqrt{2}-1$
22. B
23. $\frac{1}{2}[\cos (2 \theta)+\cos (16 \theta)]$
24. $2 \sin (2 \theta) \sin \frac{3 \theta}{2}$
25. C
26. A
