Section 1.3
 Average Rate of Change

If a car travels 110 miles in 2 hours, its average rate of change is \qquad . Suppose you accelerate on the highway and glancing at the speedometer, you see that at that instant your \qquad rate of change is 55 mph . These are two quite different concepts. Average rate of change is something that we are familiar with. Instantaneous rate of change involves ideas of limits and calculus.

Example 1:

How many suits were produced from 9 AM to 10 AM?

How many suits were produced from 10 AM to 11 AM?

What was the hourly rate of production from 8 AM to 9 AM ?

Example 2:
What was the average number of suits produced per hour from 9 AM to 11 AM?

The average rate of change of y with respect to x , as x changes from x_{1} to x_{2}, is

Example 3: For $f(x)=x^{2}+1$, find the average rate of change as x changes from 1 to 3 .

Example 4: For $f(x)=x^{2}-5$, find the average rate of change as x changes from 0 to 4 .

Use the diagrams to show average rate of change as the different quotient.

Example 5: For $f(x)=x^{2}$, find the simplified form of the difference quotient. Complete the chart.

\mathbf{x}	\mathbf{h}	$\frac{\mathbf{f}(\mathbf{x}+\mathbf{h})-\mathbf{f}(\mathbf{x})}{\mathbf{h}}$
5	2	
5	1	
5	0.1	
5	0.01	

Section 1.3

Average Rate of Change

If a car travels 110 miles in 2 hours, its average rate of change is \qquad 55 mph . Suppose you accelerate on the highway and glancing at the speedometer, you see that at that instant your instantaneous_rate of change is 55 mph . These are two quite different concepts. Average rate of change is something that we are familiar with. Instantaneous rate of change involves ideas of limits and calculus.

Example 1:

How many suits were produced from 9 AM to 10 AM ?

$$
55-20=35 \text { suits }
$$

How many suits were produced from 10 AM to 11 AM ?

$$
64-55=9 \text { suits }
$$

What was the hourly rate of production from 8 AM to 9 AM ? 20 suits per hour

Example 2:

What was the average number of suits produced per hour from 9 AM to 11 AM?
$\frac{64-20}{3-1}=\frac{44}{2}=22$

$$
22 \text { suits per hour }
$$

average rate of change

The average rate of change of y with respect to x, as x changes from x_{1} to x_{2}, is

$$
m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

Example 3: For $f(x)=x^{2}+1$, find the average rate of change as x changes from 1 to 3 .
when $x_{1}=1, y_{1}=1^{2}+1=2$
when $x_{2}=3, y_{2}=3^{2}+1=10$

$$
\begin{aligned}
& \text { average rate } \\
& \text { of change }
\end{aligned}=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{10-2}{3-1}=\frac{8}{2}=4
$$

Example 4: For $f(x)=x^{2}-5$, find the average rate of change as x changes from 0 to 4 .
when $x_{1}=0, \quad y_{1}=0^{2}-5=-5$
when $x_{2}=4, y_{2}=4^{2}-5=11$

$$
\begin{aligned}
& \text { average rate change }
\end{aligned}=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{11-(-5)}{4-0}=\frac{16}{4}=4
$$

$$
Q\left(x_{2}, f\left(x_{8}\right)\right)
$$

Use the diagrams to show average rate of change as the different quotient.

$$
\begin{aligned}
& \text { average rate }=m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f(x+h)-f(x)}{(x+h)-x}=\frac{f(x+h)-f(x)}{h} \\
& \text { of change }
\end{aligned}
$$ of change

Example 5: For $f(x)=x^{2}$, find the simplified form of the difference quotient. Complete the chart.

$$
\begin{aligned}
& \mathbf{h} \left\lvert\, \begin{array}{c|c|c|}
2 x+h \\
f(x+h)-\mathbf{f}(\mathbf{x})
\end{array}\right. \\
& \begin{array}{c|c|c}
\mathbf{x} & \mathbf{h} & \frac{f(x+h)-f(x)}{h} \\
\hline 5 & 2 & 2(5)+2=12 \\
\hline
\end{array} \\
& =\frac{x^{2}+2 x h+h^{2}-x^{2}}{h} \\
& =\frac{2 \times h+h^{2}}{h} \\
& =\frac{h(2 x+h)}{h} \\
& =2 x+h
\end{aligned}
$$

