Section 1.4
Differentiation Using Limits of Difference Quotient

The slope of the tangent line at $(x, f(x))$ is

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

This limit is also the instantaneous rate of change of $f(x)$ at x.

For a function $y=f(x)$, its derivative at x is the function f^{\prime} defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists.
If $f^{\prime}(x)$ exists, then we say that f is differentiable at x.

Example 1: Which of the lines in the following graph appear to be tangent lines?

Example 2: Given the function $f(x)=x^{2}$, find the following.
a. $f^{\prime}(x)$
b. $f^{\prime}(-1)$
c. $f^{\prime}(2)$
d. The equation of the tangent line at $x=2$

If $f^{\prime}(x)$ exists, then we say that f is differentiable at x. When is f not differentiable?
I. A function $f(x)$ is not differentiable at a point $x=a$, if there is a "corner" at a.

II. A function $f(x)$ is not differentiable at a point $x=a$, if there is a vertical tangent at a.

III. A function $f(x)$ is not differentiable at a point $x=a$, if it is not continuous at a.

Example 4: List the points in the graph at which the function is not differentiable.

Section 1.4
Differentiation Using Limits of Difference Quotient

The slope of the tangent line at $(x, f(x))$ is

$$
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

This limit is also the instantaneous rate of change of $f(x)$ at x.

For a function $y=f(x)$, its derivative at x is the function f^{\prime} defined by

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists.
If $f^{\prime}(x)$ exists, then we say that f is differentiable at x.

Example 1: Which of the lines in the following graph appear to be tangent lines?

Example 2: Given the function $f(x)=x^{2}$, find the following.
a. $f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-x^{2}}{h}=\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-x^{2}}{h}$

$$
=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h}=\lim _{h \rightarrow 0} \frac{h(2 x+h)}{h}=\lim _{h \rightarrow 0} 2 x+h=2 x+0-2 x
$$

b. $f^{\prime}(-1)=2(-1)=-2$ slope of tangent line when $x=-1$
c. $f^{\prime}(2)=2(2)=4$ slope of tangent line when $x=2$
d. The equation of the tangent line at $x=2$. Remember $y=f(x)=x^{2}$

$$
\begin{array}{ll}
x_{1}=2, y_{1}=(2)^{2}=4 & \text { Equation } \\
m=f^{\prime}(2)=4 & y-y_{1}=m\left(x-x_{1}\right) \\
y-4=4(x-2) \\
y-4=4 x-8 \\
y=4 x-4
\end{array}
$$

If $f^{\prime}(x)$ exists, then we say that f is differentiable at x. When is f not differentiable?
I. A function $f(x)$ is not differentiable at a point $x=a$, if there is a "corner" at a.

II. A function $f(x)$ is not differentiable at a point $x=a$, if there is a vertical tangent at a.

III. A function $f(x)$ is not differentiable at a point $x=a$, if it is not continuous at a.

not differentiable at $x=-2$

Example 4: List the points in the graph at which the function is not differentiable.

$$
\text { not differentiable at } x_{1}, x_{2}, x_{3}, x_{4}
$$

