Section 2.1 Rates of Change and Tangent Lines to Curves

Big Ideas-- Average Rate of Change
Instantaneous Rate of Change
Slope of Tangent Line

DEFINITION The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

Example 1:

Find the average rate of change for $f(x)=x^{2}-2 x$ over the interval $[1,3]$.

Example 2:
Find the average rate of change for $f(t)=3+\cos t$ over the interval $\left[\frac{\pi}{2}, \frac{4 \pi}{3}\right]$.

Example 3:

Let y denote the distance fallen in feet after t seconds, $y=f(t)=16 t^{2}$. Find the average speed of a rock dropped from a tall cliff during the first 2 seconds of falling.

How could you find the "instantaneous" rate of change or speed at the time $t=1$ second? The big idea is to find the average rate of change with increasingly smaller intervals. Recall that $y=f(t)=16 t^{2}$. Complete the following table.

Interval
[1,2]
Average Rate of Change (in $\mathrm{ft} / \mathrm{sec}$)
$\frac{f(2)-f(1)}{2-1}=\frac{64-48}{1}=48$
[1, 1.5]
[1, 1.1]
[1, 1.01]
[1, 1.001]
[1, 1.0001]

As you can see, as the interval gets smaller, the average rate of speed gets closer to \qquad , the instantaneous speed at $\mathrm{t}=1$ second.

This is the same idea as the slope of the secant line to a curve (the slope between any two points on the curve, average rate of change) and the slope of the tangent line to a curve (only one point on curve, instantaneous rate of change).

FIGURE 2.1 A secant to the graph $y=f(x)$. Its slope is $\Delta y / \Delta x$, the average rate of change of f over the interval $\left[x_{1}, x_{2}\right]$.

There is a nice animation of the slope of the tangent line at https://www.geogebra.org/m/sVCRDDmA

Section 2.1 Rates of Change and Tangent Lines to Curves
Big Ideas-- Average Rate of Change
Instantaneous Rate of Change
Slope of Tangent Line

DEFINTTION The average rate of change of $y=f(x)$ with respect to x over the interval $\left[x_{1}, x_{2}\right]$ is

$$
\frac{\Delta y}{\Delta x}=\frac{f\left(x_{2}\right)-f\left(x_{1}\right)}{x_{2}-x_{1}}=\frac{f\left(x_{1}+h\right)-f\left(x_{1}\right)}{h}, \quad h \neq 0 .
$$

Example 1:
Find the average rate of change for $f(x)=x^{2}-2 x$ over the interval $[1,3]$.

$$
\frac{\Delta y}{\Delta x}=\frac{f(3)-f(1)}{3-1}=\frac{\left(3^{2}-2 \cdot 3\right)-\left(1^{2}-2 \cdot 1\right)}{3-1}=\frac{4}{2}=2
$$

Example 2:
Find the average rate of change for $f(t)=3+\cos t$ over the interval $\left[\frac{\pi}{2}, \frac{4 \pi}{3}\right]$.

$$
\begin{aligned}
\frac{\Delta y}{\Delta x} & =\frac{f\left(\frac{4 \pi}{3}\right)-f\left(\frac{\pi}{2}\right)}{\frac{4 \pi}{3}-\frac{\pi}{2}}=\frac{\left(3+\cos \frac{4 \pi}{3}\right)-\left(3+\cos \frac{\pi}{2}\right)}{\frac{4 \pi}{3}-\frac{\pi}{2}} \\
& =\frac{(3-12)-(3+0)}{\frac{8 \pi}{6}-\frac{3 \pi}{6}}=\frac{-12}{\frac{5 \pi}{6}}-\frac{12}{5} \cdot \frac{6}{5 \pi}-\frac{3}{5 \pi}
\end{aligned}
$$

Example 3:
Let y denote the distance fallen in feet after t seconds, $y=f(t)=16 t^{2}$. Find the average speed of a rock dropped from a tall cliff during the first 2 seconds of falling. $[0,2]$

$$
\frac{\Delta y}{\Delta x}=\frac{f(2)-f(0)}{2-0}=\frac{64-0}{2-0}=32 f+1 \sec
$$

How could you find the "instantaneous" rate of change or speed at the time $t=1$ second? The big idea is to find the average rate of change with increasingly smaller intervals. Recall that $y=f(t)=16 t^{2}$. Complete the following table.

Interval
[1, 2]
[1, 1.5]
[1, 1.1]
[1, 1.01]
[1, 1.001]
[1, 1.0001]

Average Rate of Change (in $\mathrm{ft} / \mathrm{sec}$)
$\frac{f(2)-f(1)}{2-1}=\frac{64-48}{1}=48$
$=40$
$=33.6$
$=32.16$
$=32.016$
$=32.0016$

As you can see, as the interval gets smaller, the average rate of speed gets closer to instantaneous speed at $t=1$ second.

This is the same idea as the slope of the secant line to a curve (the slope between any two points on the curve, average rate of change) and the slope of the tangent line to a curve (only one point on curve, instantaneous rate of change).

FIGURE 2.1 A secant to the graph $y=f(x)$. Its slope is $\Delta y / \Delta x$, the average rate of change of f over the interval $\left[x_{1}, x_{2}\right]$.

There is a nice animation of the slope of the tangent line at https://www.geogebra.org/m/sVCRDDmA

