Section 2.2-2.4 Limit of a Function
(Sandwich, Squeeze, or Pinch Theorem)

THEOREM 4—The Sandwich Theorem Suppose that g(x) = f(x) = h(x) for
all x in some open interval containing ¢, except possibly at x = c itself. Suppose
also that

lim g(x) = lim A(x) = L.
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The Sandwich Theorem (also known as the Squeeze or Pinching Theorem) can be used to prove
the following.

THEOREM 7 —Limit of the Ratio sin /6 as 6§ — 0
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FIGURE 2.32 The graph of f(8) = (sin6)/6 suggests that the right-
and left-hand limits as 6 approaches 0 are both 1.



Example 2: Find the following limits using Theorem 7.
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FIGURE 2.32 The graph of f(8) = (sin 0)/0 suggests that the right-
and left-hand limits as 6 approaches 0 are both 1.




Example 2: Find the following limits using Theorem 7.
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