Section 2.5 Continuity and Intermediate Value Theorem

Big Idea: A function is continuous if you can draw it without lifting your pencil, no breaks,
jumps, or holes.

Look at the functions below, only (a) is continuous at x=0. The other functions, (b)-(f) are
discontinuous at x=0.
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Example 1: Consider the function below. Where is the function discontinuous?




Continuity Test
A function f(x) is continuous at a point x = c if and only if it meets the following
three conditions.

1. f(c) exists (c lies in the domain of f).
2. lim,_,. f(x) exists (f has a limit as x — ¢).
3. lim,_,, f(x) = f(c) (the limit equals the function value).
Example 2: At what points are the following functions continuous?
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b) f(x)=3x+5

¢) f(x)=sinx
d) f(x)=tanx
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For what value of a is f(x) = {x Lx<3

continuous at every x?
2ax, x=3 y

Example 4:

. . 24+3x-10 .
Define f(2) in such a way that extends f(x) = “x—_xz to be continuous at x=2.



THEOREM 11—The Intermediate Value Theorem for Continuous Functions  If f

is a continuous function on a closed interval [a, b], and if yj is any value between
f(a) and f(b), then yy = f(c) for some ¢ in [a, b].
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Example 5:
Show that f(x) = x3 — x — 1 has a zero between x=1 and x=2.

f(1)=
£(2)=

So by the intermediate value theorem, f(c)=0 for some c in the interval [1, 2].

Can you do better?
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Continuity Test

A function f(x) is continuous at a point x = c if and only if it meets the following

three conditions.
1. f(c) exists

2. bm, .. f(x) exists

3. lim,_,, (%)

= f(©)

(c lies in the domain of f).
(f has a limit as x — ¢).

(the limit equals the function value).
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At what points are the following functions continuous?
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THEOREM 11—The Intermediate Value Theorem for Continuous Functions  If f

is a continuous function on a closed interval [a, b], and if v, is any value between
f(a) and f(b), then yy = f(c) for some ¢ in [a, b].
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Example S:
Show that f(x) = x3 — x — 1 has a zero between x=1 and x=2.

fih= V==l =
2= ¢-2-1 =5

So by the intermediate value theorem, f(c)=0 for some c in the interval [1, 2].

Can you do better?
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