Big Idea: A function is continuous if you can draw it without lifting your pencil, no breaks, jumps, or holes.

Look at the functions below, only (a) is continuous at $\mathrm{x}=0$. The other functions, (b)-(f) are discontinuous at $\mathrm{x}=0$.

Example 1: Consider the function below. Where is the function discontinuous?

Continuity Test

A function $f(x)$ is continuous at a point $x=c$ if and only if it meets the following three conditions.

1. $f(c)$ exists
2. $\lim _{x \rightarrow c} f(x)$ exists
3. $\lim _{x \rightarrow c} f(x)=f(c)$
(c lies in the domain of f).
(f has a limit as $x \rightarrow c$).
(the limit equals the function value).

Example 2: \quad At what points are the following functions continuous?
a) $\quad f(x)=\frac{1}{x^{2}-9}$
b) $\quad f(x)=3 x+5$
c) $\quad f(x)=\sin x$
d) $\quad f(x)=\tan x$
e) $\quad f(x)= \begin{cases}\frac{x^{2}-x-6}{x-3}, & x \neq 3 \\ 5, & x=3\end{cases}$

Example 3:

For what value of a is $f(x)=\left\{\begin{array}{ll}x^{2}-1, & x<3 \\ 2 a x, & x \geq 3\end{array}\right.$ continuous at every x ?

Example 4:

Define $\mathrm{f}(2)$ in such a way that extends $\mathrm{f}(x)=\frac{x^{2}+3 x-10}{x-2}$ to be continuous at $\mathrm{x}=2$.

THEOREM 11—The Intermediate Value Theorem for Continuous Functions If f is a continuous function on a closed interval $[a, b]$, and if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

Example 5:

Show that $f(x)=x^{3}-x-1$ has a zero between $\mathrm{x}=1$ and $\mathrm{x}=2$.
$\mathrm{f}(1)=$
$f(2)=$

So by the intermediate value theorem, $\mathrm{f}(\mathrm{c})=0$ for some c in the interval $[1,2]$.
Can you do better?

Section 2.5 Continuity and Intermediate Value Theorem

Big Idea: A function is continuous if you can draw it without lifting your pencil, no breaks, jumps, or holes.

Look at the functions below, only (a) is continuous at $x=0$. The other functions, (b)-(f) are discontinuous at $\mathrm{x}=0$.

Example 1: Consider the function below. Where is the function discontinuous?

$f(x)$ is discontinous at
$x=1, x=2, x=4$

Note $x=1$ is jump discontinuity
$x=2$ and $x=4$ are point discontinuities (removable)

Continuity Test
A function $f(x)$ is continuous at a point $x=c$ if and only if it meets the following three conditions.

1. $f(c)$ exists
(c lies in the domain of f).
2. $\lim _{x \rightarrow c} f(x)$ exists
(f has a limit as $x \rightarrow c$).
3. $\lim _{x \rightarrow c} f(x)=f(c)$
(the limit equals the function value).

Example 2: At what points are the following functions continuous?
a) $f(x)=\frac{1}{x^{2}-9} \quad \begin{array}{ll}\text { discont. on } x=3, x=-3 \\ & \text { cont on }(-\infty,-3),(-3,3),(3, \infty)\end{array}$
b) $\quad f(x)=3 x+5$ continuous $(-\infty, \infty)$
c) $\quad f(x)=\sin x$
continuous $(-\infty, \infty)$
d) $\quad f(x)=\tan x$ discontinuous $x=\pi / 2, \frac{3 \pi}{2}$ etc $(2 n+1) \frac{\pi}{2}$
e) $\quad f(x)= \begin{cases}\frac{x^{2}-x-6}{x-3}, & x \neq 3 \\ 5, & x=3\end{cases}$
continuous $(-\infty, \infty)$ $\lim _{x \rightarrow 3} f(x)=5$

Example 3:
For what value of a is $f(x)=\left\{\begin{array}{l}x^{2}-1, x<3 \\ 2 a x,\end{array} x \geq 3\right.$ continuous at every $x ? \quad \mathbf{a}=4 / 3$

$$
\begin{aligned}
3^{2}-1 & =2 a(3) \\
8 & =6 a \\
4 / 3 & =a
\end{aligned}
$$

Example 4:
Define $\mathrm{f}(2)$ in such a way that extends $\mathrm{f}(x)=\frac{x^{2}+3 x-10}{x-2}$ to be continuous at $\mathrm{x}=2$.

$$
\lim _{x \rightarrow 2} \frac{(x-2)(x+5)}{x-2}=\lim _{x \rightarrow 2} x+5=7
$$

So $f(2)=7$

THEOREM 11-The Intermediate Value Theorem for Continuous Functions If f is a continuous function on a closed interval $[a, b]$, and if y_{0} is any value between $f(a)$ and $f(b)$, then $y_{0}=f(c)$ for some c in $[a, b]$.

Example 5:

Show that $f(x)=x^{3}-x-1$ has a zero between $\mathrm{x}=1$ and $\mathrm{x}=2$.
$f(1)=1-1-1=-1$
$f(2)=8-2-1=5$
So by the intermediate value theorem, $\mathrm{f}(\mathrm{c})=0$ for some c in the interval $[1,2]$.
Can you do better?

