Section 3.1-3.2 Tangent Lines and the Derivative

What's a secant line to a curve?
A straight line between two points on the curve. The diagram shows two points on the curve ($\mathrm{x}, \mathrm{f}(\mathrm{x})$) and ($\mathrm{x}+\mathrm{h}, \mathrm{f}(\mathrm{x}+\mathrm{h})$)

What's the slope of the secant line?

$$
m=\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{x+h-x}=\frac{f(x+h)-f(x)}{x}
$$

What's the tangent line?
A straight line that touches the curve at one point. The green line is a secant line. The blue line is a tangent line to the curve at $\mathrm{x}=1$.

What's the slope of the tangent line?
Imagine that the point $(\mathrm{x}+\mathrm{h}, \mathrm{f}(\mathrm{x}+\mathrm{h}))$ slides to the point $(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ so that the distance h goes to 0 .
$m_{\text {tan }}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x}$

The following are all interpretations for the limit of the difference quotient

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

1. The slope of the graph of $y=f(x)$ at $x=x_{0}$
2. The slope of the tangent line to the curve $y=f(x)$ at $x=x_{0}$
3. The rate of change of $f(x)$ with respect to x at the $x=x_{0}$
4. The derivative $f^{\prime}\left(x_{0}\right)$ at $x=x_{0}$

Example 1:

Use a grade and a straight edge to make a rough estimate of the slope of the curve at the points A, B, C, D, and E .

Example 2: Find the slope of the curve $f(x)=3 x+4$. Explain your result with the graph $f(x)$

DEFINITION The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists.

Example 3: Given $\mathrm{f}(x)=x^{2}+1$.
a) Find $f^{\prime}(x)$
b) Find the slope of the tangent line to $f(x)$ when $\mathrm{x}=-2, \mathrm{x}=0$, and $\mathrm{x}=2$.
c) Compare slopes found in b to the graph of $f(x)$.
d) Graph $f^{\prime}(x)$ and draw conclusions.

Example 4: Given $\mathrm{f}(x)=x^{2}-8 x+9$
a) Find $f^{\prime}(x)$
b) Find $f^{\prime}(3)$
c) Find $f(3)$
d) Find the equation of the tangent line to the graph of $f(x)$ at $x=3$.
e) Graph $f(x)$ and the line from part d.

Example 5: Given $\mathrm{f}(x)=\frac{1}{x}$
a) Find $f^{\prime}(x)$
b) Find $f^{\prime}(2)$
c) Find the equation of the tangent line to the graph of $f(x)$ at $x=2$.

Example 6: Given $\mathrm{f}(x)=\sqrt{x}$
a) Find $f^{\prime}(x)$
b) Find the slope of the tangent line at $x=9$
c) Find the equation of the tangent line to the graph of $f(x)$ at $x=9$.

When Does a Function NOT Have a Derivative at a Point?

4. a discontinuity (two examples shown)

5. wild oscillation

FIGURE 3.8 The function $y=|x|$ is not differentiable at the origin where the graph has a "corner"

FIGURE 3.9 The square root function is not differentiable at $x=0$, where the graph of the function has a vertical tangent line.

Section 3.1-3.2 Tangent Lines and the Derivative

What's a secant line to a curve?
A straight line between two points on the curve. The diagram shows two points on the curve ($\mathrm{x}, \mathrm{f}(\mathrm{x})$) and ($\mathrm{x}+\mathrm{h}, \mathrm{f}(\mathrm{x}+\mathrm{h})$)

What's the slope of the secant line?

$$
m=\frac{\Delta y}{\Delta x}=\frac{f(x+h)-f(x)}{x+h-x}=\frac{f(x+h)-f(x)}{x}
$$

What's the tangent line?
A straight line that touches the curve at one point. The green line is a secant line. The blue line is a tangent line to the curve at $\mathrm{x}=1$.

What's the slope of the tangent line?
Imagine that the point $(\mathrm{x}+\mathrm{h}, \mathrm{f}(\mathrm{x}+\mathrm{h}))$ slides to the point $(\mathrm{x}, \mathrm{f}(\mathrm{x}))$ so that the distance h goes to 0 .
$m_{\text {tan }}=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{x}$

The following are all interpretations for the limit of the difference quotient

$$
\lim _{h \rightarrow 0} \frac{f\left(x_{0}+h\right)-f\left(x_{0}\right)}{h}
$$

1. The slope of the graph of $y=f(x)$ at $x=x_{0}$
2. The slope of the tangent line to the curve $y=f(x)$ at $x=x_{0}$
3. The rate of change of $f(x)$ with respect to x at the $x=x_{0}$
4. The derivative $f^{\prime}\left(x_{0}\right)$ at $x=x_{0}$

Example 1:
Use a grade and a straight edge to make a rough estimate of the slope of the curve at the points A, B, C, D, and E.

Example 2: Find the slope of the curve $f(x)=3 x+4$. Explain your result with the graph $\mathrm{f}(\mathrm{x})$

$$
\begin{aligned}
m=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h} & =\lim _{h \rightarrow 0} \frac{3(x+h)+4-(3 x+4)}{h}=\lim _{h \rightarrow 0} \frac{3 x+3 h+4-3 x-4}{h} \\
& =\lim _{h \rightarrow 0} \frac{3 h}{h}=\lim _{h \rightarrow 0} 3=3
\end{aligned}
$$

slope of curve $=3$
$f(x)=3 x+4$ is a line with slope of 3 and intercept of 4 .

DEFINTITON The derivative of the function $f(x)$ with respect to the variable x is the function f^{\prime} whose value at x is

$$
f^{\prime}(x)=\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}
$$

provided the limit exists.

Example 3: Given $\mathrm{f}(x)=x^{2}+1$.
a) Find $f^{\prime}(x)$
b) Find the slope of the tangent line to $f(x)$ when $\mathrm{x}=-2, \mathrm{x}=0$, and $\mathrm{x}=2$.
c) Compare slopes found in b to the graph of $f(x)$.
d) Graph $f^{\prime}(x)$ and draw conclusions.
a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\frac{(x+h)^{2}+1-\left(x^{2}+1\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}+1-x^{2}-1}{h}=\lim _{h \rightarrow 0} \frac{2 x h+h^{2}}{h} \\
& =\lim _{h \rightarrow 0} 2 x+h=2 x+0=2 x
\end{aligned}
$$

b)

$$
\begin{aligned}
& f^{\prime}(-2)=2(-2)=-4 \\
& f^{\prime}(0)=2(0)=0 \\
& f^{\prime}(2)=2(2)=4
\end{aligned}
$$

c)
d)

Example 4: Given $\mathrm{f}(x)=x^{2}-8 x+9$
a) Find $f^{\prime}(x)$
b) Find $f^{\prime}(3)$
c) Find $f(3)$
d) Find the equation of the tangent line to the graph of $f(x)$ at $x=3$.
e) Graph $f(x)$ and the line from part d.
a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{(x+h)^{2}-8(x+h)+9-\left(x^{2}-8 x+9\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{x^{2}+2 x h+h^{2}-8 x-8 h+9-x^{2}+8 x-9}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 x h+h^{2}-8 h}{h}=\lim _{h \rightarrow 0} 2 x+h-8=2 x-8
\end{aligned}
$$

b) $f^{\prime}(3)=2(3)-8=-2 \leftrightarrow$ slope
c) $f(3)=3^{2}-8(3)+9=-6$ \& value when $x=3$
d)

$$
\begin{gathered}
y-y_{1}=m\left(x-x_{1}\right) \\
y-(-6)=-2(x-3) \\
y+6=-2 x+6 \\
y=-2 x
\end{gathered}
$$

e)

Example 5: Given $\mathrm{f}(x)=\frac{1}{x}$
a) Find $f^{\prime}(x)$
b) Find $f^{\prime}(2)$
c) Find the equation of the tangent line to the graph of $f(x)$ at $x=2$.
a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\frac{1}{x+h}-\frac{1}{x}}{h} \cdot \frac{x(x+h)}{x(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{x-(x+h)}{x h(x+h)}=\lim _{h \rightarrow 0} \frac{-h}{x h(x+h)} \\
& =\lim _{h \rightarrow 0} \frac{-1}{x(x+h)}=\frac{-1}{x(x+0)}=\frac{-1}{x^{2}}
\end{aligned}
$$

b) $f^{\prime}(z)=\frac{-1}{z^{2}}=-1 / 4$
c)

$$
\begin{aligned}
f(2) & =1 / 2 \\
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 / 2 & =-1 / 4(x-2) \\
y-1 / 2 & =-y_{4} x+\frac{1}{2} \\
y & =-\frac{1}{4} x+1
\end{aligned}
$$

Example 6: Given $\mathrm{f}(x)=\sqrt{x}$
a) Find $f^{\prime}(x)$
b) Find the slope of the tangent line at $\mathrm{x}=9$
c) Find the equation of the tangent line to the graph of $f(x)$ at $x=9$.
a)

$$
\begin{aligned}
f^{\prime}(x) & =\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}=\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \\
& =\lim _{h \rightarrow 0} \frac{\sqrt{x+h}-\sqrt{x}}{h} \cdot \frac{\sqrt{x+h}+\sqrt{x}}{\sqrt{x+h}+\sqrt{x}} \\
& =\lim _{h \rightarrow 0} \frac{(x+h)-(x)}{h(\sqrt{x+h}+\sqrt{x})} \\
& =\lim _{h \rightarrow 0} \frac{h}{h(\sqrt{x+h}+\sqrt{x})}=\lim _{h \rightarrow 0} \frac{1}{\sqrt{x+h}+\sqrt{x}} \\
& =\frac{1}{\sqrt{x+0}+\sqrt{x}}=\frac{1}{2 \sqrt{x}}
\end{aligned}
$$

b) $f^{\prime}(q)=\frac{1}{2 \sqrt{9}}=\frac{1}{2(3)}=\frac{1}{6}$
c)

$$
\begin{aligned}
& f(a)=\sqrt{9}=3 \\
& y-y_{1}=m\left(x-x_{1}\right) \\
& y-3=y_{6}(x-9) \\
& y-3=\frac{1}{6} x-\frac{9}{6} \\
& y-3=\frac{1}{6} x-\frac{3}{2} \\
& y=\frac{1}{6} x+\frac{3}{2}
\end{aligned}
$$

When Does a Function NOT Have a Derivative at a Point?

FGURE 3.8 The function $y=|x|$ is not differentiable at the origin where the graph has a "corner"

FIGURE 3.9 The square root function is not differentiable at $x=0$, where the graph of the function has a vertical tangent line.

