Section 3.1-3.2 Tangent Lines and the Derivative

What’s a secant line to a curve? )
A straight line between two points on the curve.

The diagram shows two points on the curve
(x, f(x)) and (x+h, f(x+h))

f(x+h)

What’s the slope of the secant line?
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What’s the tangent line?

A straight line that touches the curve at one point. \ﬂ
The green line is a secant line. The blue line is a '
tangent line to the curve at x=1. —

What’s the slope of the tangent line?
Imagine that the point (x+h, f(x+h)) slides to the
point (x, f(x)) so that the distance h goes to 0.
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The following are all interpretations for the limit of the difference quotient

. fxo + h) — f(xp)
lim )
h—0 h

1. The slope of the graph of y = f(x) at x = X,

2. The slope of the tangent line to the curve y = f(x) at x = x,
3. The rate of change of f(x) with respect to x at the x = x,

4. The derivative f'(x,) at x = x,




Example 1:

Use a grade and a straight edge to make a rough
estimate of the slope of the curve at the points A, B,
C,D,and E.
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Example 2: Find the slope of the curve f(x) = 3x + 4. Explain your result with the graph f(x)

DEFINITION  The derivative of the function f(x) with respect to the variable x is
the function f’ whose value at x is

flx + k) — f(x)

f(X)=hlg)r}) p :

provided the limit exists.




Example 3: Given f(x) = x? + 1.

a) Find f'(x)

b) Find the slope of the tangent line to f(x) when x=-2, x=0, and x=2.
c¢) Compare slopes found in b to the graph of f(x).

d) Graph f'(x) and draw conclusions.



Example 4: Given f(x) = x> —8x + 9

a) Find f'(x)

b) Find f'(3)

c¢) Find f(3)

d) Find the equation of the tangent line to the graph of f(x) at x=3.
e) Graph f(x) and the line from part d.



Example 5: Given f(x) = z

X
a) Find f'(x)
b) Find f'(2)
c¢) Find the equation of the tangent line to the graph of f(x) at x=2.



Example 6: Given f(x) = Vx

a) Find f'(x)

b) Find the slope of the tangent line at x=9

c¢) Find the equation of the tangent line to the graph of f(x) at x=9.



When Does a Function NOT Have a Derivative at a Point?

1. a corner, where the one-sided
derivatives differ

4. a discontinuity (two examples shown)

>
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y'not defined at x = 0:
right-hand derivative
# left-hand derivative

FIGURE 3.8 The function y = |x|is
not differentiable at the origin where
the graph has a “corner”

2. a cusp, where 3. avertical tangent line,
the slope of PQ where the slope of PQ
approaches o from approaches o from both
one side and — sides or approaches —o
from the other from both sides

(here, —)

5. wild oscillation

y=Vx

0 1 2

FIGURE 3.9 The square root function

is not differentiable at x = 0, where the
graph of the function has a vertical tangent
line.

THEOREM 1—bifferentiability Implies Continuity
X = c, then f is continuous at x = c.

If f has a derivative at
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1. The slope of the graph of y = f(x) at x = x

2. The slope of the tangent line to the curve y = f(x) at x = X,
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Example 2: Find the slope of the curve f(x) = 3x + 4. Explain your result with the graph f(x)
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DEFINITION  The derivative of the function f(x) with respect to the variable x is
the function f' whose value at x is
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Example 3: Given f(x) = x% + 1.

a) Find f'(x)

b) Find the slope of the tangent line to f(x) when x=-2, x=0, and x=2.
c¢) Compare slopes found in b to the graph of f(x).

d) Graph f'(x) and draw conclusions.
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Example 4: Given f(x) = x> —8x + 9

a) Find f'(x)

b) Find f'(3)

¢) Find f(3)

d) Find the equation of the tangent line to the graph of f(x) at x=3.
e) Graph f(x) and the line from part d.
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Example 5: Given f(x) = i

a) Find f'(x)
b) Find f'(2)
¢) Find the equation of the tangent line to the graph of f(x) at x=2.
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Example 6: Given f(x) = Vx

a) Find f'(x)

b) Find the slopé of the tangent line at x=9

c) Find the equation of the tangent line to the graph of f(x) at x=9.
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