| Student: | Instructor:
 Course:
 Dath-1540-W-OL-F18 | Assignment: Practice Problems for |
| :--- | :--- | :--- | :--- |

Student:
Course: Math-1540-W-OL-F18

1. Find the average rate of change of the function over the given intervals.
$f(x)=10 x^{3}+10 ;$
a) $[4,6]$,
b) $[-5,5]$
a) The average rate of change of the function $f(x)=10 x^{3}+10$ over the interval $[4,6]$ is 760 (Simplify your answer.)
b) The average rate of change of the function $f(x)=10 x^{3}+10$ over the interval $[-5,5]$ is 250 (Simplify your answer.)

ID: 2.1.1
2. (a) Find the slope of the curve $y=x^{2}-4 x-4$ at the point $P(3,-7)$ by finding the limit of the secant slopes through point P.
(b) Find an equation of the tangent line to the curve at $\mathrm{P}(3,-7)$.
(a) The slope of the curve at $P(3,-7)$ is \qquad (Simplify your answer.)
(b) The equation of the tangent line to the curve at $P(3,-7)$ is $y=$ \qquad $2 x-13$.

ID: 2.1.9

3. Find the following limit.

$$
\lim _{x \rightarrow-2}\left(-x^{2}+5 x-4\right)
$$

$\lim _{x \rightarrow-2}\left(-x^{2}+5 x-4\right)=-\mathbf{- 1 8}$ (Simplify your answer.)
ID: 2.2.12
4. Find $\lim _{x \rightarrow 17} \frac{x-17}{x^{2}-289}$.
$\lim _{x \rightarrow 17} \frac{x-17}{x^{2}-289}=\frac{1}{34}$
(Type an integer or a simplified fraction.)
ID: 2.2.23
5.

Find $\lim _{x \rightarrow 144} \frac{\sqrt{x}-12}{x-144}$.
$\lim _{x \rightarrow 144} \frac{\sqrt{x}-12}{x-144}=\frac{1}{24}$
(Type an integer or a simplified fraction.)
ID: 2.2.35
6. Find the limit.

$$
\lim _{x \rightarrow 0} \frac{5+4 x+\boldsymbol{\operatorname { s i n }} x}{6 \boldsymbol{\operatorname { c o s }} x}
$$

$\lim _{x \rightarrow 0} \frac{5+4 x+\sin x}{6 \boldsymbol{\operatorname { c o s }} x}=\quad \frac{\mathbf{5}}{\mathbf{6}} \quad$ (Type an integer or a simplified fraction.)

ID: 2.2.47
7. Limits of the form $\lim _{h \rightarrow 0} \frac{f(x+h)-f(x)}{h}$ occur frequently in calculus. Evaluate this limit for the given value of x and function f.

$$
f(x)=x^{2}, \quad x=-8
$$

The value of the limit is \qquad . (Simplify your answer.)

ID: 2.2.57
8.

For the function graphed to the right, explain why $\lim f(x) \neq 3$.

Choose the correct reason below.A. The limit of $f(x)$ as x approaches 4 is 4 .B. The limit of $f(x)$ as x approaches 4 is $\frac{9}{2}$.C. The limit of $f(x)$ as x approaches 4 does not exist.D. The limit of $f(x)$ as x approaches 4 is 6 .

ID: 2.3.59
9. Use the following function and its graph to answer (a) through (d) below.

Let $f(x)= \begin{cases}4-x, & x<3 \\ x+1, & x>3 .\end{cases}$

a. Find $\lim f(x)$ and $\lim f(x)$. Select the correct choice below and fill in any answer boxes in your choice. $x \rightarrow 3^{+} \quad x \rightarrow 3^{-}$
A. $\quad \lim f(x)=$ \qquad , $\lim _{x \rightarrow 3^{-}} f(x)=$ \qquad (Simplify your answer.) $x \rightarrow 3^{+}$
B. The limit does not exist.
b. Does $\lim f(x)$ exist? If so, what is it? If not, why not? $x \rightarrow 3$
(-) A. $\operatorname{No}, \lim f(x)$ does not exist because $\lim f(x) \neq \lim f(x)$.
$\mathbf{x} \rightarrow \mathbf{3} \quad \mathbf{x} \rightarrow \mathbf{3}^{+} \quad \mathbf{x} \rightarrow \mathbf{3}^{-}$B. No, $\lim f(x)$ does not exist because $f(3)$ is undefined.

$$
x \rightarrow 3
$$C. Yes, $\lim f(x)$ exists and equals 1 .

$$
x \rightarrow 3
$$D.

Yes. $\lim f(x)$ exists and equals 4.
c. Find $\lim f(x)$ and $\lim f(x)$. Select the correct choice below and fill in any answer boxes in your choice. $x \rightarrow 4^{+} \quad x \rightarrow 4^{-}$
A. $\quad \lim f(x)=$ $x \rightarrow 4^{+}$
\qquad , $\lim f(x)=$ \qquad (Simplify your answer.)B. The limit does not exist.
d. Does $\lim f(x)$ exist? If so, what is it? If not, why not? $x \rightarrow 4$A. No, $\lim f(x)$ does not exist because $f(4)$ is undefined.

$$
x \rightarrow 4
$$B. Yes, $\lim f(x)$ exists and equals 5 .

$$
x \rightarrow 4
$$C. No, $\lim f(x)$ does not exist because $\lim f(x) \neq \lim f(x)$.

$$
x \rightarrow 4 \quad x \rightarrow 4^{+} \quad x \rightarrow 4^{-}
$$D. Yes, $\lim f(x)$ exists and equals 0 .

$$
x \rightarrow 4
$$

ID: 2.4.3

10. Use the relation $\lim _{\theta \rightarrow 0} \frac{\boldsymbol{\operatorname { s i n }} \theta}{\theta}=1$ to determine the limit.

$$
\lim _{\theta \rightarrow 0} \frac{\boldsymbol{\operatorname { s i n }} \sqrt{5} \theta}{\sqrt{5} \theta}
$$

Select the correct answer below and, if necessary, fill in the answer box to complete your choice.
(A. $\lim _{\theta \rightarrow 0} \frac{\sin \sqrt{5} \theta}{\sqrt{5} \theta}=1 \quad 1 \quad$ (Type an integer or a simplified fraction.)B. The limit does not exist.

ID: 2.4.21
11. Find the following limit.
$\lim \theta \boldsymbol{\operatorname { c o s }} \theta$
$\theta \rightarrow \frac{\pi}{2}$

Select the correct choice below and fill in any answer boxes within your choice.A. $\lim \theta \cos \theta=$ \qquad (Type an exact answer, using π as needed.) $\theta \rightarrow \frac{\pi}{2}$B. The limit does not exist.

ID: 2.4.37
12. Once you know $\lim f(x)$ and $\lim f(x)$ at an interior point of the domain of f, do you then know $\lim f(x)$? Give $x \rightarrow a^{+} \quad x \rightarrow a^{-} \quad x \rightarrow a$ reasons for your answer.

Choose the correct answer below.
A. If the side limits are equal to each other, then $\lim f(x)$ exists and it equals the common value $x \rightarrow a$
of the side limits. If the side limits are not equal to each other, then $\lim f(x)$ equals to the
$x \rightarrow a$
larger limit.
B. If the side limits are equal to each other, then $\lim f(x)$ exists and it equals the common $x \rightarrow a$ value of the side limits. If the side limits are not equal to each other, then $\lim f(x)$ does $\mathbf{x} \rightarrow \mathbf{a}$ not exist.C. Nothing can be said about $\lim f(x)$. $x \rightarrow a$

ID: 2.4.43
13. Say whether the function graph below is continuous on [-3,5]. If not, where does it fail to be continuous?

Select the correct answer below and, if necessary, fill in the answer box to complete your choice.
A. The graph is not continuous at $\mathrm{x}=$ 2
(Use a comma to separate answers as needed.)
B. The graph is not continuous on the interval \qquad .
(Type your answer in interval notation.)
C. The graph is continuous on $[-3,5]$.

ID: 2.5.1
14. Use the function and the accompanying figure to answer the following questions.
a. Is f defined at $x=2$?
(-) Yes
\bigcirc No
b. Is f continuous at $x=2$?YesNo
$f(x)= \begin{cases}x^{2}-1, & -1 \leq x<0 \\ 5 x, & 0<x<1 \\ 4, & x=1 \\ -3 x+8, & 1<x<2 \\ 2, & 2 \leq x<3\end{cases}$

ID: 2.5.7
15.

Select the correct description of the continuity of $f(x)$ at $x=5$.
A. The function is continuous.
B. There is a non-removable discontinuity because $f(5)=f(x)$ for other values of x in the domain of $f(x)$.C. The function has a non-removable discontinuity.

ID: 2.5.11

16. Find the limit of the rational function \mathbf{a}. as $\mathrm{x} \rightarrow \infty$ and \mathbf{b}. as $\mathrm{x} \rightarrow-\infty$.

$$
h(x)=\frac{19 x^{4}}{3 x^{4}+15 x^{3}+14 x^{2}}
$$

a. $\lim _{x \rightarrow \infty} \frac{19 x^{4}}{3 x^{4}+15 x^{3}+14 x^{2}}=\frac{19}{3} \quad$ (Simplify your answer.)
b. $\lim _{x \rightarrow-\infty} \frac{19 x^{4}}{3 x^{4}+15 x^{3}+14 x^{2}}=\quad \frac{19}{3} \quad$ (Simplify your answer.)

ID: 2.6.17
17.

Find the limit of $f(x)=\frac{4 x^{4}+6 x^{3}+9}{7 x^{5}}$ as x approaches ∞ and as x approaches $-\infty$.
$\lim _{x \rightarrow \infty} f(x)=0$
(Simplify your answer.)
$\lim _{x \rightarrow-\infty} f(x)=$
0
(Simplify your answer.)
ID: 2.6.19
18.

Find $\lim _{x \rightarrow \infty} \sqrt[3]{\frac{1+8 x^{2}}{x^{2}+9}}$.
$\lim _{x \rightarrow \infty} \sqrt[3]{\frac{1+8 x^{2}}{x^{2}+9}}=$ 2 (Simplify your answer.)

ID: 2.6.23
19. Find the following limit.

$$
\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+4}}{2 x^{2}+1}
$$

$\lim _{x \rightarrow \infty} \frac{\sqrt{x^{4}+4}}{2 x^{2}+1}=\frac{\mathbf{1}}{\mathbf{2}} \quad$ (Simplify your answer.)

ID: 2.6.33
20. Find the limit.

$$
\lim _{x \rightarrow 3^{+}} \frac{3}{x-3}
$$

$\lim _{x \rightarrow 3^{+}} \frac{3}{x-3}=\ldots \quad$ (Simplify your answer.)

ID: 2.6.40
21. In a controlled laboratory experiment, yeast cells are grown in an automated cell culture system that counts the number P of cells present at hourly intervals. The number after t hours is shown in the accompanying figure. Complete parts (a) through (c) below.

a. Explain what is meant by the derivative $\mathrm{P}^{\prime}(5)$. What are its units?

Choose the correct answer below.A. The derivative $\mathrm{P}^{\prime}(5)$ represents the average rate of change of the number of cells from $\mathrm{t}=0$ to $t=5$.B. The derivative $P^{\prime}(5)$ represents the average number of cells from $t=0$ to $t=5$.C. The derivative $P^{\prime}(5)$ represents the rate of change of the number of cells at $t=5$.D. The derivative $P^{\prime}(5)$ represents the number of cells at $t=5$.

The units of the derivative $\mathrm{P}^{\prime}(5)$ are (1) \qquad
b. Which is larger, $\mathrm{P}^{\prime}(1)$ or $\mathrm{P}^{\prime}(4)$? Give a reason for your answer.A. $P^{\prime}(1)$ is larger, because the value of $P(t)$ is greater at $t=1$ than at $t=4$.B. $P^{\prime}(4)$ is larger, because the slope of the graph of $P(t)$ is greater at $t=4$ than at $t=1$.C. $P^{\prime}(4)$ is larger, because the value of $P(t)$ is greater at $t=4$ than at $t=1$.D. $P^{\prime}(1)$ is larger, because the slope of the graph of $P(t)$ is greater at $t=1$ than at $t=4$.
c. The quadratic curve capturing the trend of the data points is given by $P(t)=7.20 t^{2}-19.85 t+16.67$. Find the instantaneous rate of growth when $t=5$ hours.

The instantaneous rate of growth is

52.15

(2) \qquad
(Round to two decimal places as needed.)
(1) the number of hours.
the number of cells per hour squared.
(2) $\frac{\text { cells }}{\text { hour }^{2}}$.
() the number of cells per hour.
the number of cells.
(-) $\frac{\text { cells }}{\text { hour }}$.
cells.
hours.

ID: 3.1.23
22. At t sec after liftoff, the height of a rocket is $3 \mathrm{t}^{2} \mathrm{ft}$. How fast is the rocket climbing 7 sec after the liftoff?

The speed of the rocket 7 seconds after liftoff is \qquad $\mathrm{ft} / \mathrm{sec}$.
(Simplify your answer.)

ID: 3.1.30

23. Find the indicated derivative.

$$
\frac{d y}{d x} \text { if } y=-2 x^{3 / 2}
$$

$$
\frac{d y}{d x}=-3 x^{\frac{1}{2}}
$$

ID: 3.2.11
24. Differentiate the function and find the slope of the tangent line at the given value of the independent variable.
$s=-4 t^{4}-2 t^{3}, t=-1$A. -10B. 22
(C. 10
D. -22

ID: 3.2-15
25. Find the derivative.
$y=14 x^{-2}+5 x^{3}-2 x$
(A. $-28 x^{-3}+15 x^{2}-2$
B. $-28 x^{-1}+15 x^{2}-2$C. $-28 x^{-3}+15 x^{2}$D. $-28 x^{-1}+15 x^{2}$

ID: 3.3-4
26. Find the second derivative.
$y=4 x^{2}+8 x+4 x^{-3}$A. $8-48 x^{-5}$B. $8 x+8-12 x^{-4}$C. $8+48 x^{-1}$D. $8+48 x^{-5}$

ID: 3.3-12
27. Find y^{\prime}.
$y=\left(3 x^{3}+3\right)\left(3 x^{7}-9\right)$A. $90 x^{9}+63 x^{6}-81 x$
B. $12 x^{9}+63 x^{6}-81 x$
C. $12 x^{9}+63 x^{6}-81 x^{2}$D. $90 x^{9}+63 x^{6}-81 x^{2}$

ID: 3.3-18
28. Find the derivative of the function.
$y=\frac{x^{2}-3 x+2}{x^{7}-2}$
A. $y^{\prime}=\frac{-5 x^{8}+18 x^{7}-14 x^{6}-4 x+6}{\left(x^{7}-2\right)^{2}}$
B. $y^{\prime}=\frac{-5 x^{8}+18 x^{7}-14 x^{6}-3 x+6}{\left(x^{7}-2\right)^{2}}$
C. $y^{\prime}=\frac{-5 x^{8}+19 x^{7}-14 x^{6}-4 x+6}{\left(x^{7}-2\right)^{2}}$D. $y^{\prime}=\frac{-5 x^{8}+18 x^{7}-13 x^{6}-4 x+6}{\left(x^{7}-2\right)^{2}}$

ID: 3.3-22
29. Find the derivative.
$w=z^{5-e}$
A. $\frac{z^{6-e}}{6-e}$
B. $(4-e) z^{5-e}$
C. z^{5-e}
(D. $(5-e) z^{4-e}$

ID: 3.3-31
30. Find the first and second derivatives.
$y=-9 x^{6}+1$
$\frac{d y}{d x}=-54 x^{5}$
$\frac{d^{2} y}{d x^{2}}=-270 x^{4}$
ID: 3.3.1

