Section 3.6 Chain Rule of Derivatives

Review function composition from algebra. Review outer and inner functions.

Chain Rule $(f \circ g)' = f'(g(x)) \cdot g'(x)$ Derivative of a composite function= (derv. of outer function) times (derv. of inner function)

THEOREM 2—The Chain Rule If f(u) is differentiable at the point u = g(x)and g(x) is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and $(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$ In Leibniz's notation, if y = f(u) and u = g(x), then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$ where dy/du is evaluated at u = g(x).

Example 1: Using the rules above, find the derivative of the following. Do not simplify. a) $y = \sin(x^2 - 5x)$

b)
$$y = \tan(x^3)$$

c)
$$y = (x^2 - 3x + 5)^{10}$$

d)
$$y = \sqrt{5 - x^2}$$

e)
$$y = \sqrt[3]{x^3 - 7x^2}$$

Example 2: Using the rules above, find the derivative of the following. Do not simplify. a) $y = \sin^2 5x$

b) $y = \cot^6 3 x^9$

Example 3: Find the derivative using the product and chain rule. Do not simplify. $y = (x - 3)^5(x^2 + 1)^4$

Example 4: Find the derivative using the quotient and chain rule. Do not simplify. $y = \left(\frac{\cos x}{\sqrt{x}}\right)^3$

Example 5: Find the derivative using the product and chain rule. Simplify. $y = (4x + 3)^4 (x + 1)^{-3}$

Section 3.6 Chain Rule of Derivatives

Review function composition from algebra. Review outer and inner functions.

Chain Rule

 $(f \circ g)' = f'(g(x)) \cdot g'(x)$ Derivative of a composite function= (derv. of outer function) times (derv. of inner function)

THEOREM 2—The Chain Rule If f(u) is differentiable at the point u = g(x)and g(x) is differentiable at x, then the composite function $(f \circ g)(x) = f(g(x))$ is differentiable at x, and $(f \circ g)'(x) = f'(g(x)) \cdot g'(x).$ In Leibniz's notation, if y = f(u) and u = g(x), then $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx},$ where dy/du is evaluated at u = g(x).

Example 1: Using the rules above, find the derivative of the following. Do not simplify. a) $y = \sin(x^2 - 5x)$

$$y' = \cos(x^2 - 5x) \cdot (2x - 5)$$

b)
$$y = \tan(x^3)$$

 $y' = \sec^2(x^3) \cdot 3x^2$

c)
$$y = (x^2 - 3x + 5)^{10}$$

 $y' = 10(x^2 - 3x + 5)^{\circ}(2x - 3)$

d)
$$y = \sqrt{5 - x^2} = (5 - x^2)^{\frac{1}{2}}$$

 $y' = \frac{1}{2}(5 - x^2)^{-\frac{1}{2}} \cdot (-2x)$
e) $y = \sqrt[3]{x^3 - 7x^2} = (x^3 - 7x^2)^{\frac{1}{3}}$
 $y' = \sqrt{3}(x^3 - 7x^2)^{-\frac{1}{3}} \cdot (3x^2 - \frac{14x^3}{3})^{\frac{1}{3}}$

outer, middle, inner
Example 2: Using the rules above, find the derivative of the following. Do not simplify.
a)
$$y = \sin^2 5x \Rightarrow y = (\sin(5x))^2$$

 $y' = 2(\sin 5x)^4(\cos 5x) \cdot (5)$
b) $y = \cot^6 3x^9 \Rightarrow y = (\cot(3x^9))^6$
 $y' = 6(\cot 3x^9)^5(-\csc^2 3x^9) \cdot (27x^8)$

Example 3: Find the derivative using the product and chain rule. Do not simplify. $y = (x - 3)^5(x^2 + 1)^4$

$$y' = (X-3)^{5} (4(x^{2}+1)^{3}(zx)) + (x^{2}+1)^{4} (5(x-3)^{4}(1))$$

Example 4: Find the derivative using the quotient and chain rule. Do not simplify. $y = \left(\frac{\cos x}{\sqrt{x}}\right)^3 = \left(\frac{\cos x}{\sqrt{y_2}}\right)^3$ $y' = 3\left(\frac{\cos x}{\sqrt{x}}\right)^2 \cdot \left(\frac{x^{\frac{y_2}{(-\sin x)} - \cos x}(\frac{y_2 x^{-\frac{y_2}{2}}}{(x^{\frac{y_2}{2}})^2}}{(x^{\frac{y_2}{2}})^2}\right)$

Example 5: Find the derivative using the product and chain rule. Simplify. $y = (4x + 3)^{4}(x + 1)^{-3}$ $y' = (4x + 3)^{4}(-3(x + 1)^{-4}(1)) + (x + 1)^{-3}(4(4x + 3)^{3}(4))$ $y' = -3(4x + 3)^{4}(x + 1)^{-4} + 16(4x + 3)^{3}(x + 1)^{-3}$ $y' = (4x + 3)^{3}(x + 1)^{-4}(-3(4x + 3) + 16(x + 1))$ $y' = (4x + 3)^{3}(x + 1)^{-4}(-12x - 9 + 16x + 16)$ $y' = (4x + 3)^{3}(x + 1)^{-4}(4x + 7)$ $y' = (4x + 3)^{3}(x + 1)^{-4}(4x + 7)$ $y' = (4x + 3)^{3}(4x + 7)$ $y' = (4x + 3)^{3}(4x + 7)$