Section 3.7 Implicit Differentiation

When you want to find the derivative of an equation that is not an explicit function of x (or some other single variable), you cannot use the rules for differentiation that we have learned thus far.

Examples:

To find derivatives for equations which cannot be expressed as explicit functions of one variable, we must use a method called implicit differentiation.

Explicit variables match	Implicit variables don't match
$\frac{d}{d x}(x)=1$	$\frac{d}{d x}(y)=\frac{d y}{d x}$
$\frac{d}{d t}(t)=1$	$\frac{d}{d t}(x)=\frac{d x}{d t}$
$\frac{d}{d x}\left(x^{3}\right)=3 x^{2}$	$\frac{d}{d x}\left(y^{3}\right)=3 y^{2} \frac{d y}{d x}$
$\frac{d}{d x}(\sin x)=\cos x$	$\frac{d}{d x}(\sin y)=\cos y \frac{d y}{d x}$

Using the Method of Implicit Differentiation

1. Find $\frac{d y}{d x}$ for $x^{2}+y^{2}=1$.

Take the derivative of both sides of the equation with respect to " x "

Algebraically solve for $\frac{d y}{d x}$
2. Find $\frac{d^{2} y}{d x^{2}}$ for $x^{2}+y^{2}=1$. Refer back to \#1
3. a) Find $\frac{d y}{d x}$ for $y=3 x^{5}+x^{3} y^{2}$
b) Find slope of the tangent line to the graph of for $y=3 x^{5}+x^{3} y^{2}$ at the point $(1,-2)$
4. Find $\frac{d y}{d x}$ for $\cos (x y)=y$.

Section Implicit Differentiation
When you want to find the derivative of an equation that is not an explicit function of x (or some other single variable), you cannot use the rules for differentiation that we have learned thus far.
Examples: $\quad x y=y^{3}$

$$
7 x^{4}+x^{3} y+y=4
$$

$$
5 y^{2}+\sin y=x^{2}
$$

To find derivatives for equations which cannot be expressed as explicit functions of one variable, we must use a method called implicit differentiation.

Explicit variables match	Implicit variables don't match
$\frac{d}{d x}(x)=1$	$\frac{d}{d x}(y)=\frac{d y}{d x}$
$\frac{d}{d t}(t)=1$	$\frac{d}{d t}(x)=\frac{d x}{d t}$
$\frac{d}{d x}\left(x^{3}\right)=3 x^{2}$	$\frac{d}{d x}\left(y^{3}\right)=3 y^{2} \frac{d y}{d x}$
$\frac{d}{d x}(\sin x)=\cos x$	$\frac{d}{d x}(\sin y)=\cos y \frac{d y}{d x}$

Using the Method of Implicit Differentiation

1. Find $\frac{d y}{d x}$ for $x^{2}+y^{2}=1$.

Take the derivative of both sides of the equation with respect to " x "

$$
2 x+2 y \frac{d y}{d x}=0
$$

Algebraically solve for $\frac{d y}{d x}$

$$
\begin{aligned}
2 x+2 y \frac{d y}{d x} & =0 \\
2 y \frac{d y}{d x} & =-2 x \\
\frac{d y}{d x} & =\frac{-2 x}{2 y}=\frac{-x}{y}
\end{aligned}
$$

2. Find $\frac{d^{2} y}{d x^{2}}$ for $x^{2}+y^{2}=1$. Refer back to \#1

$$
\begin{aligned}
& \frac{d y}{d x}=\frac{-x}{y} \\
& \frac{d^{2} y}{d x^{2}}=\frac{y(-1)-(-x) \frac{d y}{d x}}{y^{2}} \\
& \frac{d^{2} y}{d x^{2}}=\frac{-y+x\left(\frac{-x}{y}\right)}{y^{2}} \cdot \frac{y}{y}=\frac{-y^{2}-x^{2}}{y^{3}}=\frac{-1\left(x^{2}+y^{2}\right)}{y^{3}}=\frac{-1}{y^{3}}
\end{aligned}
$$

$$
\begin{aligned}
& \text { 3. a) Find } \frac{d y}{d x} \text { for } y=3 x^{5}+x^{3} y^{2} \\
& \frac{d y}{d x}=15 x^{4}+x^{3} 2 y \frac{d y}{d x}+y^{2} \cdot 3 x^{2} \\
& \frac{d y}{d x}-2 x^{3} y \frac{d y}{d x}=15 x^{4}+3 x^{2} y^{2} \\
& \frac{d y}{d x}\left(1-2 x^{3} y\right)=15 x^{4}+3 x^{2} y^{2} \\
& \frac{d y}{d x}=\frac{15 x^{4}+3 x^{2} y^{2}}{1-2 x^{3} y}
\end{aligned}
$$

b) Find slope of the tangent line to the graph of for $y=3 x^{5}+x^{3} y^{2}$ at the point $(1,-2)$

$$
m=\frac{d y}{d x}=\frac{15(1)^{4}+3(1)^{2}(-2)^{2}}{1-2(1)^{3}(2)}=\frac{27}{5}
$$

4. Find $\frac{d y}{d x}$ for $\cos (x y)=y$.

$$
\begin{aligned}
& -\sin (x y)\left(x \cdot \frac{d y}{d x}+y(1)\right)=\frac{d y}{d x} \\
& -x \sin (x y) \frac{d y}{d x}+-y \sin (x y)=\frac{d y}{d x} \\
& -y \sin (x y)=\frac{d y}{d x}+x \sin (x y) \frac{d y}{d x} \\
& -y \sin (x y)=\frac{d y}{d x}(1+x \sin (x y)) \\
& -\frac{y \sin (x y)}{1+x \sin (x y)}=\frac{d y}{d x}
\end{aligned}
$$

