Section 4.1 Extreme Values of Functions on Closed Intervals.

Let fbe a function with domain D.
Then f has an absolute maximum value on D at a point ¢ if f{x) < f{c) for all x in D
and an absolute minimum value on D at a point c if f{x) > f{c) for all x in D.

Example 1: The absolute extrema of the following functions on their domains can be seen in
the figure below. Each function has the same defining equation, y = x?, but the domains vary.

Function rule Domain D Absolute extrema on D
@@ y =x? (=00, 00) No absolute maximum.
Absolute minimum of 0 at x = 0.
(b) y = x? [0, 2] Absolute maximum of 4 at x = 2.
Absolute minimum of 0 at x = 0.
(©) y=x? (0, 2] Absolute maximum of 4 at x = 2.
No absolute minimum.
d) y=x? ©,2) No absolute extrema.
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(a) abs min only

(b) abs max and min

(c) abs max only

(d) no max or min

[a, b].

THEOREM 1—The Extreme Value Theorem
[a, b], then f attains both an absolute maximum value M and an absolute
minimum value m in [a, b]. That is, there are numbers x; and x, in
[a, b] with f(x;) = m, f(x;) = M, and m = f(x) = M for every other x in

If f is continuous on a closed interval
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DEFINITIONS A function f has a local maximum value at a point ¢ within its
domain D if f(x) = f(c) for all x € D lying in some open interval containing c.

A function f has a local minimum value at a point ¢ within its domain D if
f(x) = f(c) for all x € D lying in some open interval containing c.

Let fbe a function with domain D.
Then f has an absolute maximum value on D at a point ¢ if f{x) < f{c) for all x in D
and an absolute minimum value on D at a point c if f{x) > f{c) for all x in D.

Absolute maximum
No greater value of fanywhere.
Local maximum Also a local maximum.
No greater value of
f nearby.

Local minimum
No smaller value

Absolute minimum
No smaller value of
f anywhere. Also a |
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FIGURE 4.5 How to identify types of maxima and minima for a function with domain
a=x=h

THEOREM 2—The First Derivative Theorem for Local Extreme Values If fhasa
local maximum or minimum value at an interior point ¢ of its domain, and if f’ is
defined at ¢, then

f'(c) = 0.

DEFINITION  An interior point of the domain of a function f where f’ is zero
or undefined is a critical point of f.

FIGURE 4.7 Critical points without

but y = x* has no extremum there.

(a) (b) but y = x'/3 has no extremum there.

extreme values. (a) y' = 3x?isOatx = 0,

(b) y' = (1/3)x %3 is undefined at x = 0,



Finding the Absolute Extrema of a Continuous Function f on a Finite
Closed Interval

1. Find all critical points of f on the interval.

2. Evaluate f at all critical points and endpoints.

3. Take the largest and smallest of these values.

Example 2: Find the absolute maximum and minimum values of f(x) = x2 on [-2, 1].

Example 3: Find the absolute maximum and minimum values of g(t) = 8t — t* on [-2, 1].
.

1,7
B

(-2,-32) 3l

2
Example 4: Find the absolute maximum and minimum values of f(x) = x3 on [-2, 3].
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Finding the Absolute Extrema of a Continuous Function f on a Finite
Closed Interval

1. Find all critical points of f on the interval.
2. Evaluate f at all critical points and endpoints.

3. Take the largest and smallest of these values.

Example 2: Find the absolute maximum and minimum values of f(x) =x?on[-2,1].
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Example 3: Find the absolute maximum and minimum values of gt) =8t—t*on[-2,1].
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Example 4: Find the absolute maximum and minimum values of f(x) = x3 on [-2, 3].
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