Section 4.1 Extreme Values of Functions on Closed Intervals.

Let f be a function with domain D.

Then *f* has an **absolute maximum** value on *D* at a point *c* if $f(x) \le f(c)$ for all *x* in *D* and an **absolute minimum** value on *D* at a point *c* if $f(x) \ge f(c)$ for all *x* in *D*.

Example 1: The absolute extrema of the following functions on their domains can be seen in the figure below. Each function has the same defining equation, $y = x^2$, but the domains vary.

DEFINITIONS A function f has a **local maximum** value at a point c within its domain D if $f(x) \le f(c)$ for all $x \in D$ lying in some open interval containing c.

A function f has a **local minimum** value at a point c within its domain D if $f(x) \ge f(c)$ for all $x \in D$ lying in some open interval containing c.

Let f be a function with domain D.

Then *f* has an **absolute maximum** value on *D* at a point *c* if $f(x) \le f(c)$ for all *x* in *D* and an **absolute minimum** value on *D* at a point *c* if $f(x) \ge f(c)$ for all *x* in *D*.

FIGURE 4.5 How to identify types of maxima and minima for a function with domain $a \le x \le b$.

THEOREM 2—The First Derivative Theorem for Local Extreme Values If f has a local maximum or minimum value at an interior point c of its domain, and if f' is defined at c, then

f'(c) = 0.

DEFINITION An interior point of the domain of a function f where f' is zero or undefined is a **critical point** of f.

FIGURE 4.7 Critical points without extreme values. (a) $y' = 3x^2$ is 0 at x = 0, but $y = x^3$ has no extremum there. (b) $y' = (1/3)x^{-2/3}$ is undefined at x = 0, but $y = x^{1/3}$ has no extremum there. Finding the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

- 1. Find all critical points of f on the interval.
- **2.** Evaluate f at all critical points and endpoints.
- 3. Take the largest and smallest of these values.

Example 2: Find the absolute maximum and minimum values of $f(x) = x^2$ on [-2, 1].

Example 3: Find the absolute maximum and minimum values of $g(t) = 8t - t^4$ on [-2, 1].

Example 4: Find the absolute maximum and minimum values of $f(x) = x^{\frac{2}{3}}$ on [-2, 3].

Finding the Absolute Extrema of a Continuous Function f on a Finite **Closed Interval**

- 1. Find all critical points of f on the interval.
- **2.** Evaluate f at all critical points and endpoints.
- 3. Take the largest and smallest of these values.

-2

0

2

3 Absolute minimum: also a local minimum

Example 2: Find the absolute maximum and minimum values of $f(x) = x^2$ on [-2, 1].

f'(x) = 2x	$f(0) = 0^2 = 0$ MiN	Abs Mar (-2,4)
0 = 2 X 0 = X	$f(-2) = (-2)^2 = 4$ Max $f(1) = (1)^2 = 1$	Abs Min
Critical	1 C I J = C I J = J	(0,0)

Example 3: Find the absolute maximum and minimum values of $g(t) = 8t - t^4$ on [-2, 1].

Example 4: Find the absolute maximum and minimum values of $f(x) = x^{\frac{2}{3}}$ on [-2, 3]. $f'(x) = \frac{2}{3}X^{-y_2}$ f(o) = 0 $y = x^{2/3}, -2 \le x \le 3$ f(-2)= 34 Absolute maximum; f(3) = 379 More Local also a local maximum 2 maximum critical value 1 where X=0