Section 4.1 Extreme Values of Functions on Closed Intervals.

Let f be a function with domain D.
Then f has an absolute maximum value on D at a point c if $f(x) \leq f(c)$ for all x in D and an absolute minimum value on D at a point c if $f(x) \geq f(c)$ for all x in D.

Example 1: The absolute extrema of the following functions on their domains can be seen in the figure below. Each function has the same defining equation, $y=x^{2}$, but the domains vary.

Function rule	Domain \boldsymbol{D}	Absolute extrema on \boldsymbol{D}
(a) $y=x^{2}$	$(-\infty, \infty)$	No absolute maximum. Absolute minimum of 0 at $x=0$. (b) $y=x^{2}$
(c) $y=x^{2}$	$(0,2]$	Absolute maximum of 4 at $x=2$. Absolute minimum of 0 at $x=0$.
(d) $y=x^{2}$	$(0,2)$	Absolute maximum of 4 at $x=2$. No absolute minimum.

(a) abs min only

(b) abs max and min

(c) abs max only

(d) no max or min
THEOREM 1—The Extreme Value Theorem If f is continuous on a closed interval $[a, b]$, then f attains both an absolute maximum value M and an absolute minimum value m in $[a, b]$. That is, there are numbers x_{1} and x_{2} in [a,b] with $f\left(x_{1}\right)=m, f\left(x_{2}\right)=M$, and $m \leq f(x) \leq M$ for every other x in $[a, b]$.

at interior points

Maximum and minimum at endpoints

minimum at endpoint

Minimum at interior point,
maximum at endpoint

DEFINITIONS A function f has a local maximum value at a point c within its domain D if $f(x) \leq f(c)$ for all $x \in D$ lying in some open interval containing c.

A function f has a local minimum value at a point c within its domain D if $f(x) \geq f(c)$ for all $x \in D$ lying in some open interval containing c.

Let f be a function with domain D.
Then f has an absolute maximum value on D at a point c if $f(x) \leq f(c)$ for all x in D and an absolute minimum value on D at a point c if $f(x) \geq f(c)$ for all x in D.

FIGURE 4.5 How to identify types of maxima and minima for a function with domain $a \leq x \leq b$.

THEOREM 2—The First Derivative Theorem for Local Extreme Values
If f has a local maximum or minimum value at an interior point c of its domain, and if f^{\prime} is defined at c, then

$$
f^{\prime}(c)=0 .
$$

DEFINITION An interior point of the domain of a function f where f^{\prime} is zero or undefined is a critical point of f.

(a)

(b)

FIGURE 4.7 Critical points without extreme values. (a) $y^{\prime}=3 x^{2}$ is 0 at $x=0$, but $y=x^{3}$ has no extremum there.
(b) $y^{\prime}=(1 / 3) x^{-2 / 3}$ is undefined at $x=0$, but $y=x^{1 / 3}$ has no extremum there.

Finding the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

1. Find all critical points of f on the interval.
2. Evaluate f at all critical points and endpoints.
3. Take the largest and smallest of these values.

Example 2: Find the absolute maximum and minimum values of $f(x)=x^{2}$ on $[-2,1]$.

Example 3: Find the absolute maximum and minimum values of $g(t)=8 t-t^{4}$ on $[-2,1]$.

Example 4: Find the absolute maximum and minimum values of $f(x)=x^{\frac{2}{3}}$ on $[-2,3]$.

Finding the Absolute Extrema of a Continuous Function f on a Finite Closed Interval

1. Find all critical points of f on the interval.
2. Evaluate f at all critical points and endpoints.
3. Take the largest and smallest of these values.

Example 2: Find the absolute maximum and minimum values of $f(x)=x^{2}$ on $[-2,1]$.

$$
\begin{array}{clc}
f^{\prime}(x)=2 x & f(0)=0^{2}=0 \text { Min } & \text { Abs Max } \\
0=2 x & f(-2)=(-2)^{2}=4 \text { Max } & (-2,4) \\
0=x & f(1)=(1)^{2}=1 & \text { Abs Min } \\
\text { critical } & &
\end{array}
$$

Example 3: Find the absolute maximum and minimum values of $g(t)=8 t-t^{4}$ on $[-2,1]$.

$$
\begin{aligned}
& g^{\prime}(t)=8-4 t^{3} \\
& 0=8-4 t^{3} \\
& 4 t^{3}=8 \\
& t^{3}=2 \\
& t=\sqrt[3]{2} \\
& \text { not in interval }
\end{aligned}
$$

$$
\begin{aligned}
& g(-2)=-32 \\
& g(1)=7
\end{aligned}
$$

Abs Max value of 7 when $t=1$
Alos Min value of -32 when $t=-2$

Example 4: Find the absolute maximum and minimum values of $f(x)=x^{\frac{2}{3}}$ on $[-2,3]$.

$$
\begin{aligned}
f^{\prime}(x) & =\frac{2}{3} x^{-1 / 3}
\end{aligned} \begin{array}{ll}
0 & f(0)=0 \\
0 & \frac{2}{\sqrt[3]{x}}
\end{array} \quad \begin{array}{ll}
\text { Min } \\
& f(3)=\sqrt[3]{4} \\
\text { max }
\end{array}
$$

critical value where $x=0$

