Section 4.2 Rolle's and Mean Value Theorems

Example 1: Verify that the conditions of Rolle's Theorem are met for $f(x)=x^{3}-3 x^{2}+2 x$ on the interval $[0,2]$ and find all values of c that satisfy the conclusion of the theorem.

Conditions: 1) continuous? Yes
2) differentiable? Yes, and $f^{\prime}(x)=3 x^{2}-6 x+2$
3) $f(a)=f(b)$? Yes, $f(0)=f(2)$, both are $=0$

Conclusion: Then there exists at least one number c in $[0,2]$ such that $f^{\prime}(c)=0$.

$$
\begin{aligned}
f^{\prime}(c) & =3 c^{2}-6 c+2 \\
0 & =3 c^{2}-6 c+2 \text { use the quadratic formula } \\
c=1 & \pm \frac{\sqrt{3}}{3} \text { both values of } \mathrm{c} \text { are in the interval from }[0,2]
\end{aligned}
$$

Example 2: Verify that the conditions of Rolle's Theorem are met for $f(x)=\sin x$ on the interval $[0,2 \pi]$ and find all values of c that satisfy the conclusion of the theorem.

Conditions: 1) continuous? Yes
2) differentiable? Yes, and $f^{\prime}(x)=\cos x$
3) $f(a)=f(b)$? Yes, $f(0)=f(2 \pi)$, both are $=0$

Conclusion: Then there exists at least one number c in $[0,2 \pi]$ such that $f^{\prime}(c)=0$.

$$
\begin{gathered}
f^{\prime}(c)=\sin c \\
0=\sin c \\
c=\frac{\pi}{2}, \frac{3 \pi}{2}
\end{gathered}
$$

THEOREM 4-The Mean Value Theorem

Suppose $y=f(x)$ is continuous over a closed interval $[a, b]$ and differentiable on the interval's interior (a, b). Then there is at least one point c in (a, b) at which

$$
\begin{equation*}
\frac{f(b)-f(a)}{b-a}=f^{\prime}(c) \tag{1}
\end{equation*}
$$

FIGURE 4.13 Geometrically, the Mean Value Theorem says that somewhere between a and b the curve has at least one tangent line parallel to the secant line that joins A and B.

Example 3: Verify that the conditions of Mean Value Theorem are met for $f(x)=x^{3}+1$ on the interval $[1,2]$ and find all values of c that satisfy the conclusion of the theorem.

Conditions: 1) continuous? Yes
2) differentiable? Yes, and $f^{\prime}(x)=3 x^{2}$

Conclusion: Then there exists at least one number c in $[1,2]$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$.
$\frac{f(2)-f(1)}{2-1}=f^{\prime}(c)$
$\frac{9-2}{2-1}=3 c^{2}$
$7=3 c^{2}$
$\frac{7}{3}=c^{2}$
$\pm \sqrt{\frac{7}{3}}=c \quad$ only $\sqrt{\frac{7}{3}}=c$ lies in the interval $[1,2]$
Example 4: Verify that the conditions of Mean Value Theorem are met for $f(x)=\sqrt{25-x^{2}}$ on the interval $[-5,3]$ and find all values of c that satisfy the conclusion of the theorem.

Conditions: 1) continuous? Yes
2) differentiable? Yes, and $f^{\prime}(x)=\frac{x}{\sqrt{25-x^{2}}}$

Conclusion: Then there exists at least one number c in $[-5,3]$ such that $\frac{f(b)-f(a)}{b-a}=f^{\prime}(c)$. $\frac{f(3)-f(-5)}{3-(-5)}=f^{\prime}(c)$
$\frac{4}{8}=\frac{c}{\sqrt{25-c^{2}}}$

$$
\begin{aligned}
& \frac{1}{2}=\frac{c}{\sqrt{25-c^{2}}} \\
& 2 c=\sqrt{25-c^{2}} \\
& 4 c^{2}=25-c^{2} \\
& 5 c^{2}=25 \\
& c^{2}=5 \\
& c= \pm \sqrt{5}, \text { only } c=\sqrt{5} \text { checks and is in the interval }
\end{aligned}
$$

