Section 4.5 Indeterminate Forms and L'Hopital's Rule

L'Hôpital's Rule enables us to draw on our success with derivatives to evaluate limits that otherwise lead to indeterminate forms such as $\frac{0}{0}$, $\frac{\infty}{\infty}$, $\infty \cdot 0$, and $\infty - \infty$.

THEOREM 6—L'Hôpital's Rule Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Example: The following limits involve 0/0 indeterminate forms, so we apply L'Hôpital's Rule. In some cases, it must be applied repeatedly.

a)) $\lim \frac{3x - \sin x}{2}$		b)	b) $\lim \frac{\sqrt{2}}{\sqrt{2}}$	
	$x \rightarrow 0$	x	<i>b</i>) 1	$x \to 0$	x

c) $\lim_{x\to 0} \frac{x-\sin x}{x^3}$

Using L'Hôpital's Rule

To find

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

by l'Hôpital's Rule, we continue to differentiate f and g, so long as we still get the form 0/0 at x = a. But as soon as one or the other of these derivatives is different from zero at x = a we stop differentiating. L'Hôpital's Rule does not apply when either the numerator or denominator has a finite nonzero limit.

Example: L'Hôpital's Rule applies to one-sided limits as well.

a) $\lim_{x\to 0+} \frac{\sin x}{x^2}$

b)
$$\lim_{x \to 0^-} \frac{\sin x}{x^2}$$

Example: Find the limits of these ∞/∞ forms.

a)
$$\lim_{x \to \pi/2} \frac{\sec x}{1 + \tan x}$$
 b) $\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}}$ c) $\lim_{x \to \infty} \frac{e^x}{x^2}$

Example: Find the limits of these $\infty \cdot 0$ forms.

a) $\lim_{x \to 0^+} \sqrt{x} \ln x$

Example: Find the limit of this $\infty - \infty$ form.

a) $\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$

Section 4.5 Indeterminate Forms and L'Hopital's Rule

L'Hôpital's Rule enables us to draw on our success with derivatives to evaluate limits that otherwise lead to indeterminate forms such as $\frac{0}{0}, \frac{\infty}{\infty}, \infty \cdot 0$, and $\infty - \infty$.

THEOREM 6—L'Hôpital's Rule Suppose that f(a) = g(a) = 0, that f and g are differentiable on an open interval I containing a, and that $g'(x) \neq 0$ on I if $x \neq a$. Then

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)},$$

assuming that the limit on the right side of this equation exists.

Example: The following limits involve 0/0 indeterminate forms, so we apply L'Hôpital's Rule. In some cases, it must be applied repeatedly.

a)
$$\lim_{x \to 0} \frac{3x - \sin x}{x} = \lim_{X \to 0} \frac{3 - \cos x}{1}$$

= $3 - \cos x$ | $x = 0 = 3 - 1 = 2$
| $x = 0$
b) $\lim_{x \to 0} \frac{\sqrt{1 + x} - 1}{x} = \lim_{x \to 0} \frac{(1 + x)^{\frac{1}{2}} - 1}{x}$
= $\lim_{x \to 0} \frac{1}{2} \frac{(1 + x)^{\frac{1}{2}}}{1}$
= $\lim_{x \to 0} \frac{1}{2} \frac{(1 + x)^{\frac{1}{2}}}{1}$
= $\lim_{x \to 0} \frac{1}{2\sqrt{1 + x}} = \frac{1}{2\sqrt{1 + 0}} = \frac{1}{2}$

c)
$$\lim_{x \to 0} \frac{x - \sin x}{x^3}$$
 $\stackrel{o}{=} \infty$
= $\lim_{x \to 0} \frac{1 - \cos x}{3x^2}$ shill $\stackrel{o}{=}$ containe
 $\xrightarrow{x \to 0} \frac{3x^2}{3x^2}$ shill $\stackrel{o}{=}$ containe
= $\lim_{x \to 0} \frac{\sin x}{6x}$ oblill $\stackrel{o}{=}$ containe
= $\lim_{x \to 0} \frac{\cos x}{6} = \frac{\cos 0}{6} = \frac{1}{6}$

Using L'Hôpital's Rule To find

$$\lim_{x \to a} \frac{f(x)}{g(x)}$$

by l'Hôpital's Rule, we continue to differentiate f and g, so long as we still get the form 0/0 at x = a. But as soon as one or the other of these derivatives is different from zero at x = a we stop differentiating. L'Hôpital's Rule does not apply when either the numerator or denominator has a finite nonzero limit.

Example: L'Hôpital's Rule applies to one-sided limits as well.

a) $\lim_{x \to 0+} \frac{\sin x}{x^2} = \lim_{\chi \to 0+} \frac{\cos \chi}{2\chi} = 400$ b) $\lim_{x \to 0-} \frac{\sin x}{x^2} = \lim_{\chi \to 0^-} \frac{\cos \chi}{2\chi} = -00$

Example: Find the limits of these ∞/∞ forms.

a)
$$\lim_{x \to \pi/2} \frac{\sec x}{1 + \tan x}$$

duccontinuous at $\frac{\pi}{2}$ so lock
b) $\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}} = \lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}}$
 $\lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}} = \lim_{x \to \infty} \frac{\ln x}{2\sqrt{x}}$
 $\lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2x}$
 $\lim_{x \to \infty} \frac{1}{2\sqrt{x}} = \lim_{x \to \infty} \frac{1}{2\sqrt{x}}$
 $\lim_{x \to \infty} \frac{e^x}{2x} = \lim_{x \to \infty} \frac{e^x}{2x}$
 $\lim_{x \to \infty} \frac{1}{2\sqrt{x}} = \lim_{x \to \infty} \frac{1}{2\sqrt{x}} = \lim_{x \to \infty} \frac{1}{2}$
 $\lim_{x \to \infty} \frac{1}{2} = 0$
 $\lim_{x \to \infty} \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$
 $\lim_{x \to \infty} \frac{1}{\sqrt{x}} = \frac{1}{\sqrt{x}}$

Example: Find the limits of these $\infty \cdot 0$ forms.

Example: Find the limit of this $\infty - \infty$ form.

