Section 4.5 Indeterminate Forms and L’Hopital’s Rule

L'Hopital's Rule enables us to draw on our success with derivatives to evaluate limits that

) ) ) 0 oo
otherwise lead to indeterminate forms such as 0 oo - (0, and oo — oo,
(0e]

THEOREM 6—L'Hopital’s Rule Suppose that f(a) = g(a) = 0, that f and
g are differentiable on an open interval I containing a, and that g'(x) # 0 on
Iif x # a. Then
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assuming that the limit on the right side of this equation exists.

Example: The following limits involve 0/0 indeterminate forms, so we apply L'Hopital's Rule.
In some cases, it must be applied repeatedly.
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Using I’Hopital’s Rule
To find

lim 1)

x—a g(X)
by I’Hopital’s Rule, we continue to differentiate f and g, so long as we still get
the form 0/0 at x = a. But as soon as one or the other of these derivatives is
different from zero at x = a we stop differentiating. L”Ho6pital’s Rule does not
apply when either the numerator or denominator has a finite nonzero limit.

Example: L'Hopital's Rule applies to one-sided limits as well.
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Example: Find the limits of these co/co forms.
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Example: Find the limits of these oo - 0 forms.
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Example: Find the limit of this co — oo form.
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Example: Find the limits of these co/co forms.
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Example: Find the limits of these o - 0 forms.
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Example: Find the limit of this co — oo form.
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