Section 1.1
Limits and Graphs
Function Notation $\quad f(x)=x^{2}+3 x+5$
f is the name of the function
$f(x)$ indicates that x is the variable
$f(x)$ is another name for y
$f(2)$ means to plug in 2 for the variable x
$f(2)=$
$f(2)$ is the y-value when x-value is 2
the point on the graph is

Limit Notation

\rightarrow means approaches, gets closer to
$x \rightarrow 3 \quad$ means as x approaches 3
$x \rightarrow 3^{+} \quad$ means as x approaches 3 from the \qquad
$x \rightarrow 3^{-} \quad$ means as x approaches 3 from the \qquad

Definition
As x approaches a, the limit of $f(x)$ is L written

If all values of $f(x)$ are close to L for all values of x that are sufficiently close to a. The limit L, if it exists, must be a unique real number.

Theorem

As x approaches a, the limit of $f(x)$ is L if the limit from the \qquad exists and the limit from the \qquad exists and both numbers are equal.

If the right and left limits are not the same, THE limit \qquad

If $f(x)$ is increasing without bound, limit is \qquad .

If $f(x)$ is decreasing without bound, limit is \qquad .

Limits can also be used to describe behavior on the extreme \qquad and \qquad ends of graph.

Example 1:
Using the graph, find the following.
$f(-3)$
$f(0)$
$f(1)$
$\lim _{x \rightarrow 1^{+}} f(x)$
$\lim _{x \rightarrow 1^{-}} f(x)$
$\lim _{x \rightarrow 1} f(x)$

Example 2:

Using the graph, find the following.
$f(2)$
$\lim _{x \rightarrow 2^{+}} f(x)$
$\lim _{x \rightarrow 2^{-}} f(x)$
$\lim _{x \rightarrow 2} f(x)$
$\lim _{x \rightarrow-\infty} f(x)$
$\lim _{x \rightarrow+\infty} f(x)$

Example 3:
Using the graph, find the following.
$\lim _{x \rightarrow 3} f(x)$
$f(2)$
$\lim _{x \rightarrow 2^{+}} f(x)$
$\lim _{x \rightarrow 2^{-}} f(x)$
$\lim _{x \rightarrow 2} f(x)$
$\lim _{x \rightarrow-\infty} f(x)$
$\lim _{x \rightarrow \infty} f(x)$

Section 1.1
Limits and Graphs
Function Notation $\quad f(x)=x^{2}+3 x+5$
f is the name of the function
$f(x)$ indicates that x is the variable
$f(x)$ is another name for $y \not \not$
$f(2)$ means to plug in 2 for the variable x
$f(2)=2^{2}+3(2)+5=4+6+5=15$
$f(2)$ is the y-value when x-value is 2
the point on the graph is $(2,15)$

Limit Notation

\rightarrow means approaches, gets closer to
$x \rightarrow 3 \quad$ means as x approaches 3
$x \rightarrow 3^{+} \quad$ means as x approaches 3 from the right

$x \rightarrow 3^{-} \quad$ means as x approaches 3 from the left

Definition
As x approaches a, the limit of $f(x)$ is L written

$$
\lim _{x \rightarrow a} f(x)=L
$$

If all values of $f(x)$ are close to L for all values of x that are sufficiently close to a. The limit L, if it exists, must be a unique real number.

Theorem
Theorem
As x approaches a, the limit of $f(x)$ is L if the limit from the \qquad exists and the limit from the \qquad exists and both numbers are equal.

If the right and left limits are not the same, THE limit_ does not exist (DNE)

If $f(x)$ is increasing without bound, limit is \qquad $+\infty$.

If $f(x)$ is decreasing without bound, limit is \qquad .

Limits can also be used to describe behavior on the extreme left
ends of graph. $\lim _{x \rightarrow-\infty} f(x)$ and $\frac{\text { right }}{\lim _{x \rightarrow \infty} f(x)}$

Example 1:
Using the graph, find the following.

$$
\begin{aligned}
& f(-3)=4 \\
& f(0)=2 \\
& f(1)=-2 \\
& \lim _{x \rightarrow 1^{+}} f(x)=-2 \\
& \lim _{x \rightarrow 1^{-}} f(x)=4
\end{aligned}
$$

$\lim _{x \rightarrow 1} f(x)$ Dues Not Exist

Example 2:
Using the graph, find the following.
$f(2)$ undefined

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=3 \\
& \lim _{x \rightarrow 2^{-}} f(x)=3 \\
& \lim _{x \rightarrow 2} f(x)=3 \\
& \lim _{x \rightarrow-\infty} f(x)=-\infty \\
& \lim _{x \rightarrow+\infty} f(x)=+\infty
\end{aligned}
$$

Example 3:
Using the graph, find the following.

$$
\lim _{x \rightarrow 3} f(x)=4
$$

$f(2)$ undefined

$$
\begin{aligned}
& \lim _{x \rightarrow 2^{+}} f(x)=+\infty \\
& \lim _{x \rightarrow 2^{-}} f(x)=-\infty
\end{aligned}
$$

$\lim _{x \rightarrow 2} f(x)$ Does not Exist

$$
\begin{aligned}
& \lim _{x \rightarrow-\infty} f(x)=3 \\
& \lim _{x \rightarrow \infty} f(x)=3
\end{aligned}
$$

