Section 1.7 Chain Rule

The Chain Rule for Derivatives
 $$
\frac{d}{d x}\left[f(g(x)]=f^{\prime}(g(x)) \cdot g^{\prime}(x)\right.
$$

The derivative of the outer function with inner function unchanged times the derivative of the inner function.

The Extended Power Rule

$$
\frac{d}{d x}[g(x)]^{k}=k[g(x)]^{k-1} \cdot g^{\prime}(x)
$$

Keep the inside, take the derivative of the outside, multiply by the derivative of the inside.
Example 2: Find the derivatives of the following.
a. $y=\left(2 x^{2}+5 x\right)^{10}$
b. $y=\left(1+x^{3}\right)^{3}$
c. $y=(5-2 x)^{\frac{3}{2}}$
d. $y=\sqrt{1-x}$
e. $y=\frac{1}{(3 x-16)^{2}}$

$$
y=\left(x^{2}-7 x\right)^{4}(3 x-5)^{2}
$$

Example 4: Differentiate and simplify.

$$
y=\frac{4 x^{2}}{(7-5 x)^{3}}
$$

Example 5: Find the equation of the tangent line to the curve $y=\sqrt{x^{2}+3 x}$ at the point (1, 2).

Example 6: Differentiate $f(x)=(3-5 x)^{250}$
A. $\quad f^{\prime}(x)=-1250(3-5 x)^{250}$
B. $f^{\prime}(x)=250(3-5 x)^{249}$
C. $\quad f^{\prime}(x)=1250(3-5 x)^{249}$
D. $\quad f^{\prime}(x)=-1250(3-5 x)^{249}$

Example 7: \quad Differentiate $f(x)=2 x(2 x+5)^{3}$
A. $\quad f^{\prime}(x)=2(2 x+5)^{2}(8 x+5)$
B. $\quad f^{\prime}(x)=2(2 x+5)^{3}(5 x+5)$
C. $\quad f^{\prime}(x)=2(8 x+5)^{2}$
D. $f^{\prime}(x)=2(2 x+5)^{2}$

Example 8: Given a total-revenue function $R(x)=1200 \sqrt{x^{2}-0.2 x}$ and a total-cost function $C(x)=2200\left(x^{2}+3\right)^{\frac{1}{3}}+500$, both in thousands of dollars, find the rate at which total profit is changing when x items have been produced and sold.

Section 1.7 Chain Rule

The Chain Rule for Derivatives

$$
\frac{d}{d x}\left[f(g(x)]=f^{\prime}(g(x)) \cdot g^{\prime}(x)\right.
$$

The derivative of the outer function with inner function unchanged times the derivative of the inner function.

The Extended Power Rule

$$
\frac{d}{d x}[g(x)]^{k}=k[g(x)]^{k-1} \cdot g^{\prime}(x)
$$

Keep the inside, take the derivative of the outside, multiply by the derivative of the inside.
Example 2: Find the derivatives of the following.
a. $y=\left(2 x^{2}+5 x\right)^{10}$

$$
y^{\prime}=10\left(2 x^{2}+5 x\right)^{9} \cdot(4 x+5)
$$

b. $y=\left(1+x^{3}\right)^{3}$

$$
y^{\prime}=3\left(1+x^{3}\right)^{2} \cdot\left(3 x^{2}\right)
$$

c. $y=(5-2 x)^{\frac{3}{2}}$

$$
y^{\prime}=\frac{3}{2}(5-2 x)^{\frac{1}{2}} \cdot(-2)
$$

d. $y=\sqrt{1-x}=(1-x)^{1 / 2}$

$$
y^{\prime}=\frac{1}{2}(1-x)^{-1 / 2}(-1)
$$

e. $y=\frac{1}{(3 x-16)^{2}}=(3 x-16)^{-2}$

$$
y^{\prime}=-2(3 x-16)^{-3} \quad(3)
$$

product rule
Example 3: Differentiate and simplify.

$$
y=\left(x^{2}-7 x\right)^{4}(3 x-5)^{2}
$$

$$
\begin{aligned}
y^{\prime} & =f \cdot g^{\prime}+g \cdot f \\
& =\left(x^{2}-7 x\right)^{4}\left((3 x-5)^{2}\right)^{\prime}+(3 x-5)^{2}\left(\left(x^{2}-7 x\right)^{4}\right)^{\prime} \\
& =\left(x^{2}-7 x\right)^{4} \cdot 2(3 x-5)^{\prime} \cdot 3+(3 x-5)^{2} \cdot 4\left(x^{2}-7 x\right)^{3} \cdot(2 x-7) \\
& =6(3 x-5)\left(x^{2}-7 x\right)^{4}+4(2 x-7)(3 x-5)^{2}\left(x^{2}-7 x\right)^{3}
\end{aligned}
$$

Example 4: Differentiate and simplify. $y=\frac{4 x^{2}}{(7-5 x)^{3}} \quad$ quotient rule

$$
\begin{aligned}
y^{\prime} & =\frac{D N^{\prime}-N D^{\prime}}{D^{2}} \\
& =\frac{(7-5 x)^{3} \cdot 8 x-4 x^{2} \cdot 3(7-5 x)^{2} \cdot(-5)}{\left((7-5 x)^{3}\right)^{2}} \\
& =\frac{8 x(7-5 x)^{3}+60 x^{2}(7-5 x)^{2}}{(7-5 x)^{6}}
\end{aligned}
$$

Example 5: Find the equation of the tangent line to the curve $y=\sqrt{x^{2}+3 x}$ at the point $(1,2)$.

$$
\begin{aligned}
& y=\left(x^{2}+3 x\right)^{1 / 2} \\
& y^{\prime}=\frac{1}{2}\left(x^{2}+3 x\right)^{-1 / 2}(2 x+3) \\
& m=y^{\prime}=\frac{1}{2}\left(1^{2}+3(1)\right)^{-1 / 2}(2 \cdot 1+3) \\
& m=5 / 4
\end{aligned}
$$

$$
\begin{aligned}
\text { equation } & =m\left(x-x_{1}\right) \\
y-y_{1} & =\frac{5}{4}(x-1) \\
y-2 & =\frac{5}{4} x-\frac{5}{4} \\
y-2 & =\frac{5}{4} x+\frac{3}{4}
\end{aligned}
$$

Example 6: Differentiate $f(x)=(3-5 x)^{250}$
A. $f^{\prime}(x)=-1250(3-5 x)^{250}$
B. $f^{\prime}(x)=250(3-5 x)^{249}$

$$
\begin{aligned}
f^{\prime}(x) & =250 \cdot(3-5 x)^{249} \cdot(-5) \\
& =-1250(3-5 x)^{249}
\end{aligned}
$$

C. $\quad f^{\prime}(x)=1250(3-5 x)^{249}$
product rule
Example 7: \quad Differentiate $f(x)=2 x(2 x+5)^{3}$

$$
\begin{aligned}
f^{\prime}(x) & =f \cdot g^{\prime}+g \cdot f^{\prime} \\
& =2 x \cdot 3(2 x+5)^{2}(2)+(2 x+5)^{3} \cdot 2 \\
& =12 x(2 x+5)^{2}+2(2 x+5)^{3} \\
& =2(2 x+5)^{2}[6 x+(2 x+5)] \\
& =2(2 x+5)^{2}(8 x+5)
\end{aligned}
$$

Example 8: Given a total-revenue function $R(x)=1200 \sqrt{x^{2}-0.2 x}$ and a total-cost function $C(x)=2200\left(x^{2}+3\right)^{\frac{1}{3}}+500$, both in thousands of dollars, find the rate at which total profit is changing when x items have been produced and sold.
Total-Profit $=$ total-revenue - total -cost

$$
\begin{aligned}
& P(x)=R(x)-C(x) \\
&=1200 \sqrt{x^{2}-0.2 x}-\left(2200\left(x^{2}+3\right)^{1 / 3}+500\right) \\
& P(x)=1200\left(x^{2}-0.2 x\right)^{1 / 2}-2200\left(x^{2}+3\right)^{1 / 3}-500 \\
& P^{\prime}=1200 \cdot \frac{1}{2}\left(x^{2}-0.2 x\right)^{-1 / 2}(2 x-0.2)-2200 \cdot \frac{1}{3}\left(x^{2}+3\right)^{-2 / 3}-(2 x)
\end{aligned}
$$

