Section 2.2 Derivatives of Exponential (Base-e) Functions

The derivative of the function $f(x) = e^x$ is the function itself, $f'(x) = e^x$.

Example 1: Find the derivative of the following.

a. $y = e^x$ b. $y = 3e^x$

c.
$$y = x^2 e^x$$
 d. $y = \frac{e^x}{x^3}$

Example 2: Find the first derivative of the following with the Chain Rule. a. $y = 6e^{8x}$ b. $y = 4 - 2e^{x^2}$

Example 3: Find the second derivative. $y = e^{-5x^2}$

Example 4: Franco's Fishing Emporium invested \$50,000 in an account that earns 1.25% annual interest, compounded continuously. The value of the account after *t* years is given by $A(t) = 50,000e^{0.0125t}$. Find A(5) and A'(5), and interpret the meaning of each of these values.

After _____years, the value of Franco's Fishing Emporium's account is _____, and at that instant, the value is growing at the rate of _____ per year.

Section 2.2 Derivatives of Exponential (Base-e) Functions

The derivative of the function $f(x) = e^x$ is the function itself, $f'(x) = e^x$.

Example 1: Find the derivative of the following.
a.
$$y = e^{x}$$
 $y' = e^{x}$ b. $y = 3e^{x}$ $y' = 3e^{x}$
c. $y = x^{2}e^{x}$ Product
 $y' = x^{2}(e^{x})' + e^{x}(x^{2})'$ $d. \quad y = \frac{e^{x}}{x^{3}}$ $g^{uotiont}$
 $y' = \frac{x^{3}(e^{x})' - e^{x}(x^{3})}{(x^{3})^{2}} = \frac{x \cdot e^{x} - e^{x} \cdot 3x^{2}}{x^{6}}$

Example 2: Find the first derivative of the following with the Chain Rule.

a.
$$y = 6e^{8x}$$

 $y' = 6e^{8x} y = 4 - 2e^{x^2}$
 $y' = -2e^{x^2} zx = -4xe^{x}$
 $y' = -2e^{x^2} zx = -4xe^{x}$

Example 3: Find the second derivative.

$$y = e^{-5x^2}$$

 $y' = e^{-5x^2} \cdot -10x = -10xe^{-5x^2}$
 $y'' = (-10x)(e^{-5x^2})' + e^{-5x^2}(-10x)'$
 $= -10xe^{-5x^2} \cdot -10x + e^{-5x^2} - 10 = 100x^2e^{-5x^2} - 10e^{-5x^2}$

Example 4: Franco's Fishing Emporium invested \$50,000 in an account that earns 1.25% annual interest, compounded continuously. The value of the account after *t* years is given by $A(t) = 50,000e^{0.0125t}$. Find A(5) and A'(5), and interpret the meaning of each of these values. $A(5) = 50,000e^{0.0125t} = $53,224.73$ $A'(t) = 50,000e^{0.0125t} \cdot (0.0125)$ $A'(t) = 50,000e^{0.0125t} \cdot (0.0125)$ $A'(5) = 50,000e^{0.0125t} \cdot (0.0125) = 6665.31 After 5,23,224.73, and at that instant, the value of Franco's Fishing Emporium's account is 53,224.73, and per year.