Section 2.2 Derivatives of Exponential (Base-e) Functions

The derivative of the function $f(x)=e^{x}$ is the function itself, $f^{\prime}(x)=e^{x}$.
Example 1: Find the derivative of the following.
a. $y=e^{x}$
b. $y=3 e^{x}$
c. $y=x^{2} e^{x}$
d. $y=\frac{e^{x}}{x^{3}}$

Example 2: Find the first derivative of the following with the Chain Rule.
a. $y=6 e^{8 x}$
b. $y=4-2 e^{x^{2}}$

Example 3: Find the second derivative.

$$
y=e^{-5 x^{2}}
$$

Example 4: Franco's Fishing Emporium invested $\$ 50,000$ in an account that earns 1.25% annual interest, compounded continuously. The value of the account after t years is given by $A(t)=50,000 e^{0.0125 t}$. Find $A(5)$ and $A^{\prime}(5)$, and interpret the meaning of each of these values.

After \qquad years, the value of Franco's Fishing Emporium's account is \qquad and at that instant, the value is growing at the rate of \qquad per year.

Section 2.2 Derivatives of Exponential (Base-e) Functions
The derivative of the function $f(x)=e^{x}$ is the function itself, $f^{\prime}(x)=e^{x}$.
Example 1: Find the derivative of the following.
a. $y=e^{x}$

$$
y^{\prime}=e^{x}
$$

b. $\quad y=3 e^{x}$

$$
y^{\prime}=3 e^{x}
$$

c. $\quad y=x^{2} e^{x}$ product
d. $\quad y=\frac{e^{x}}{x^{3}} \quad$ quotient

$$
\begin{aligned}
& y^{\prime}=x^{2}\left(e^{x}\right)^{\prime}+e^{x}\left(x^{2}\right)^{\prime} \\
& y^{\prime}=x^{2} \cdot e^{x}+e^{x} \cdot 2 x
\end{aligned}
$$

$$
y^{\prime}=\frac{x^{3}\left(e^{x}\right)^{\prime}-e^{x}\left(x^{3}\right)^{\prime}}{\left(x^{3}\right)^{2}}=\frac{x^{3} \cdot e^{x}-e^{x} \cdot 3 x^{2}}{x^{6}}
$$

Example 2: Find the first derivative of the following with the Chain Rule.
a. $y=6 e^{8 x}$
b. $y=4-2 e^{x^{2}}$

$$
y^{\prime}=6 e^{8 x} \cdot 8=48 e^{8 x}
$$

$$
y^{\prime}=-2 e^{x^{2}} \cdot 2 x=-4 x e^{x}
$$

$$
y^{\prime}=e^{-5 x^{2}} \cdot-10 x=-10 x e^{-5 x^{2}}
$$

Example 3: Find the second derivative.

$$
y^{\prime \prime}=(-10 x)\left(e^{-5 x^{2}}\right)^{\prime}+e^{-5 x^{2}} \cdot(-10 x)^{\prime}
$$

$$
\begin{aligned}
& =(-10 x)\left(e^{-5}\right)+e \cdot(-10 x) \\
& =-10 x e^{-5 x^{2}} \cdot-10 x+e^{-5 x^{2}} \cdot-10=100 x^{2} e^{-5 x^{2}}-10 e^{-5 x^{2}}
\end{aligned}
$$

Example 4: Franco's Fishing Emporium invested $\$ 50,000$ in an account that earns 1.25% annual interest, compounded continuously. The value of the account after t years is given by $A(t)=50,000 e^{0.0125 t}$. Find $A(5)$ and $A^{\prime}(5)$, and interpret the meaning of each of these

$$
\begin{aligned}
& \text { values. } \\
& A(5)=50,000 e^{0.0125 .5}=\$ 53,224.73 \\
& A^{\prime}(t)=50,000 e^{0.0125 t} \cdot(0.0125) \\
& A^{\prime}(5)=50,000 e^{0.0125 .5} \cdot(0.0125)=\$ 665.31
\end{aligned}
$$

After \qquad years, the value of Franco's Fishing Emporium's account is \qquad $53,224 \cdot 73$, and at that instant, the value is growing at the rate of \qquad 665.73 per year.

