Section 2.3 Derivatives of Natural Logarithmic Functions

For any positive number *x*, and $y = \ln x$, then $y' = \frac{1}{x}$

Example 1: Differentiate the following. Assume x is positive.

- a. $y = x^3 + 4e^x + 5x + 3\ln x$
- b. $y = 3x^2 \ln x$
- c. $y = \frac{\ln x}{x^3}$

Example 2: Differentiate. Assume x is positive. a. $y = \ln(x^2 - 3)$ b. $y = (\ln x)^4$

Example 3: Find an equation for the tangent line to the graph of $f(x) = 3 + \ln x$ at the point (1, 3).

Example 4: Find an equation for the tangent line to the graph of $f(x) = e^{3x}$ at the point (0, 1).

Example 5: Find y''' when $y = \sqrt[3]{x} + e^{2x} + \ln x$

Example 6: In a psychological experiment, students were shown a set of nonsense syllables and asked to recall them every minute thereafter. The percentage R(t) who retained the syllables after t minutes was found to be given by the logarithmic learning model

- a. What percentage of students retained the syllables after 1 minute?
- b. Find R'(2) and explain what it represents.

Example 7: As part of a study, students in a psychology class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. After t months, the average score S(t), as a percentage, was found to be given by

 $S(t) = 78 - 15 \ln(t+1), \ 0 \le t \le 80.$

- a. What was the average score when the students initially took the test?
- b. What was the average score after 4 months?
- c. Find S'(t).
- d. Find S'(4) and interpret the meaning.

Section 2.3 Derivatives of Natural Logarithmic Functions

For any positive number x, and $y = \ln x$, then $y' = \frac{1}{x}$

Example 1: Differentiate the following. Assume x is positive.

a.
$$y = x^{3} + 4e^{x} + 5x + 3\ln x$$

 $y' = 3x^{2} + 4e^{x} + 5 + 3(\frac{1}{x})$
b. $y = 3x^{2}\ln x$
 $y' = 3x^{2} \cdot \frac{1}{x} + \ln x \cdot 6x - 3x + 6x$
c. $y = \frac{\ln x}{x^{3}}$
 $y' = \frac{x^{3} \cdot \frac{1}{x} - \ln x \cdot 3x^{2}}{(x^{3})^{2}} = \frac{x^{2} - 3x^{2}\ln x}{x^{6}}$

Example 2: Differentiate. Assume x is positive. a. $y = \ln(x^2 - 3)$

$$y' = \frac{1}{\chi^2 - 3} \cdot 2\chi$$

b.
$$y = (\ln x)^4$$

 $y' = 4(\ln x)^3 \cdot \frac{1}{x}$

Inx

 $y' = \frac{2x}{x^2 - 3}$

Example 3: Find an equation for the tangent line to the graph of $f(x) = 3 + \ln x$ at the point (1, 3).

$$f' = \frac{1}{2}$$

$$m = f' = \frac{1}{2}$$

$$y - y_1 = m(X - X_1)$$

 $y - 3 = 1(X - 1)$
 $y - 3 = X - 1$
 $y = X + 2$

Example 4: Find an equation for the tangent line to the graph of $f(x) = e^{3x}$ at the point (0, 1). $f' = e^{3x} \cdot 3$ $m = f' = e^{3 \cdot 0} \cdot 3 = 1 \cdot 3 = 3$ $m = f' = e^{3 \cdot 0} \cdot 3 = 1 \cdot 3 = 3$ $y - y_i = m(x - x_i)$ y - 1 = 3(x - 0) y - 1 = 3x y - 1 = 3x y - 1 = 3xy - 1 = 3x

Example 5: Find y''' when
$$y = \sqrt[3]{x} + e^{2x} + \ln x = x^{\frac{1}{3}} + e^{\frac{7}{4}} + \ln x$$

 $y' = \frac{1}{3}x^{-\frac{7}{3}} + e^{\frac{2x}{4}} + \frac{1}{x} = \frac{1}{3}x^{-\frac{7}{9}} + 2e^{\frac{7}{4}} + x^{-1}$
 $y'' = -\frac{2}{9}x^{-\frac{5}{9}} + 2e^{\frac{7}{4}} + 2e^{\frac{7}{4}} + 2e^{\frac{7}{4}} + 4e^{\frac{7}{4}} - x^{-\frac{7}{4}}$
 $y''' = \frac{10}{29}x^{-\frac{8}{9}} + 4e^{\frac{7}{4}} + 2e^{\frac{7}{4}} + 2e^{\frac{7}{4}} + 4e^{\frac{7}{4}} + 8e^{\frac{7}{4}} + 2x^{-\frac{3}{4}}$

Example 6: In a psychological experiment, students were shown a set of nonsense syllables and asked to recall them every minute thereafter. The percentage R(t) who retained the syllables after t minutes was found to be given by the logarithmic learning model

score S(t), as a percentage, was found to be given by $S(t) = 78 - 15 \ln(t+1), \ 0 \le t \le 80.$

α.

a. What was the average score when the students initially took the test?

After 4 months the average scores are decreasing at a rate b. What was the average score after 4 months? c. Find S'(t). d. Find S'(4) and interpret the meaning $5(0) = 78 - 15 k(0 + 1) = 78^{\circ 0}$ of 30% per month $5(4) = 78 - 15\ln(4+1) = 53.86^{90}$ $5'(t) = -15 \cdot \frac{1}{t+1}$ C. $s'(4) = -15 \cdot \frac{1}{4+1} = -15 \cdot \frac{1}{5} = -3$ d.