Section 2.3 Derivatives of Natural Logarithmic Functions

For any positive number x, and $y=\ln x$, then $y^{\prime}=\frac{1}{x}$
Example 1: Differentiate the following. Assume x is positive.
a. $\quad y=x^{3}+4 e^{x}+5 x+3 \ln x$
b. $\quad y=3 x^{2} \ln x$
c. $\quad y=\frac{\ln x}{x^{3}}$

Example 2: Differentiate. Assume x is positive.
a. $\quad y=\ln \left(x^{2}-3\right)$
b. $\quad y=(\ln x)^{4}$

Example 3: Find an equation for the tangent line to the graph of $f(x)=3+\ln x$ at the point $(1,3)$.

Example 4: Find an equation for the tangent line to the graph of $f(x)=e^{3 x}$ at the point $(0,1)$.

Example 5: Find $y^{\prime \prime \prime}$ when $y=\sqrt[3]{x}+e^{2 x}+\ln x$

Example 6: In a psychological experiment, students were shown a set of nonsense syllables and asked to recall them every minute thereafter. The percentage $R(t)$ who retained the syllables after t minutes was found to be given by the logarithmic learning model

$$
R(t)=80-27 \ln t, \text { for } 1 \leq t \leq 15
$$

a. What percentage of students retained the syllables after 1 minute?
b. Find $R^{\prime}(2)$ and explain what it represents.

Example 7: As part of a study, students in a psychology class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. After t months, the average score $S(t)$, as a percentage, was found to be given by

$$
S(t)=78-15 \ln (t+1), 0 \leq t \leq 80
$$

a. What was the average score when the students initially took the test?
b. What was the average score after 4 months?
c. Find $S^{\prime}(t)$.
d. Find $S^{\prime}(4)$ and interpret the meaning.

For any positive number x, and $y=\ln x$, then $y^{\prime}=\frac{1}{x}$
Example 1: Differentiate the following. Assume x is positive.
a. $\quad y=x^{3}+4 e^{x}+5 x+3 \ln x$

$$
\begin{aligned}
& y=x^{3}+4 e^{x}+5 x+3 \ln x \\
& y^{\prime}=3 x^{2}+4 e^{x}+5+3\left(\frac{1}{x}\right)
\end{aligned}
$$

b. $\quad y=3 x^{2} \ln x$

$$
\begin{aligned}
y & =3 x^{2} \ln x \\
y^{\prime} & =3 x^{2} \cdot \frac{1}{x}+\ln x \cdot 6 x=3 x+6 x \ln x
\end{aligned}
$$

c. $\quad y=\frac{\ln x}{x^{3}}$

$$
\begin{aligned}
& \text { c. } \quad y=\frac{\ln x}{x^{3}} \\
& y^{\prime}=\frac{x^{3} \cdot \frac{1}{x}-\ln x \cdot 3 x^{2}}{\left(x^{3}\right)^{2}}=\frac{x^{2}-3 x^{2} \ln x}{x^{6}} \\
& \text { Example 2: Differentiate. Assume } x \text { is positive. }
\end{aligned}
$$

Example 2: Differentiate. Assume x is positive.
a. $\quad y=\ln \left(x^{2}-3\right)$

$$
\begin{aligned}
y^{\prime} & =\frac{1}{x^{2}-3} \cdot 2 x \\
y^{\prime} & =\frac{2 x}{x^{2}-3}
\end{aligned}
$$

Example 3: Find an equation for the tangent line to the graph of $f(x)=3+\ln x$
at the point $(1,3)$.

$$
\begin{aligned}
& f^{\prime}=\frac{1}{x} \\
& m=f^{\prime}=\frac{1}{1}=1
\end{aligned}
$$

$$
\begin{aligned}
& \text { b. } \quad y=(\ln x)^{4} \\
& y^{\prime}=4(\ln x)^{3} \cdot \frac{1}{x}
\end{aligned}
$$

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-3 & =1(x-1) \\
y-3 & =x-1 \\
y & =x+2
\end{aligned}
$$

Example 4: Find an equation for the tangent line to the graph of $f(x)=e^{3 x}$ at the point $(0,1)$.

$$
\begin{aligned}
& f^{\prime}=e^{3 x} \cdot 3 \\
& m=f^{\prime}=e^{3 \cdot 0} \cdot 3=1 \cdot 3=3
\end{aligned}
$$

$$
\begin{gathered}
\text { ho of } f(x)=e^{3 x} \text { at } \\
y-y_{1}=m\left(x-x_{1}\right) \\
y-1=3(x-0) \\
y-1=3 x \\
y=3 x+1
\end{gathered}
$$

Example 5: Find $y^{\prime \prime \prime}$ when $y=\sqrt[3]{x}+e^{2 x}+\ln x=x^{\frac{1}{3}}+e^{2 x}+\ln x$

$$
\begin{aligned}
& y^{\prime}=\frac{1}{3} x^{-2 / 3}+e^{2 x} \cdot 2+\frac{1}{x}=\frac{1}{3} x^{-2 / 3}+2 e^{2 x}+x^{-1} \\
& y^{\prime \prime}=-\frac{2}{9} x^{-5 / 3}+2 e^{2 x} \cdot 2-x^{-2}=-\frac{2}{9} x^{-5 / 3}+4 e^{2 x}-x^{-2} \\
& y^{\prime \prime \prime}=\frac{10}{29} x^{-8 / 3}+4 e^{2 x} \cdot 2+2 x^{-3}=\frac{10}{29} x^{-8 / 3}+8 e^{2 x}+2 x^{-3}
\end{aligned}
$$

Example 6: In a psychological experiment, students were shown a set of nonsense syllables and asked to recall them every minute thereafter. The percentage $R(t)$ who retained the syllables after t minutes was found to be given by the logarithmic learning model

$$
R(t)=80-27 \ln t, \text { for } 1 \leq t \leq 15
$$

$$
R^{\prime}(t)=-27 \cdot \frac{1}{t}
$$

a. What percentage of students retained the syllables after 1 minute?
b. Find $R^{\prime}(2)$ and explain what it represents. \qquad After 2 minutes, the percentage who retained the syllables is decreasing at the rate of $13.5^{\%}$ per minute

Example 7: As part of a study, students in a psychology class took a final exam and then took equivalent forms of the exam at monthly intervals thereafter. After t months, the average score $S(t)$, as a percentage, was found to be given by

$$
S(t)=78-15 \ln (t+1), 0 \leq t \leq 80
$$

a. What was the average score when the students initially took the test?
b. What was the average score after 4 months?
c. Find $S^{\prime}(t)$.

After 4 months. the
d. Find $S^{\prime}(4)$ and interpret the meaning. average scores are decreasing at a rate
a.

$$
S(0)=78-15 k(0+1)=78 \%
$$

b. $s(4)=78-15 \ln (4+1)=53.86 \%$ of $3^{0 / 0}$ per month
c. $s^{\prime}(t)=-15 \cdot \frac{1}{t+1}$
d. $s^{\prime}(4)=-15 \cdot \frac{1}{4+1}=-15 \cdot \frac{1}{5}=-3$

