Section 2.6 Derivatives of a^{x} and $\log _{a} x$

$$
\text { If } y=a^{x} \text {, then } y^{\prime}=a^{x}(\ln a)
$$

Example 1 Differentiate the following.
a. $y=2^{x}$
b. $y=(1.4)^{x}$
c. $f(x)=e^{x}$
d. $y=10 \cdot 2.3^{x}$

Example 2 Differentiate the following.
a. $y=3^{2 x+1}$
b. $f(x)=7^{x^{2}}$

$$
\text { If } y=\log _{a} x, \text { then } y^{\prime}=\frac{1}{x}\left(\frac{1}{\ln a}\right)=\frac{1}{x \ln a}
$$

Example 3 Differentiate the following.
a. $y=\log _{8} x$
b. $y=\log x$
c. $y=3 \log _{4} x$

Example 4 Differentiate the following.
a. $f(x)=\log _{3}\left(x^{2}+1\right)$
b. $y=x^{3} \log _{5} x$

Example 5

In 2012, 34.2\% of all glass containers were recycled. A beverage company used $400,000 \mathrm{lb}$ of glass containers per year. After recycling, the amount of glass, in pounds, still in use after t years is given by $\quad N(t)=400,000(0.341)^{t}$
a. Find $N(4)$ and explain its meaning.
b. Find $N^{\prime}(4)$ and explain its meaning.

$$
\text { If } y=a^{x}, \text { then } y^{\prime}=a^{x}(\ln a)
$$

Example 1 Differentiate the following.
a. $y=2^{x}$

$$
y^{\prime}=2^{x} \ln 2
$$

$$
\begin{aligned}
& \text { b. } y=(1.4)^{x} \\
& y^{\prime}=1.4^{x}(\ln 1.4)
\end{aligned}
$$

c. $f(x)=e^{x}$
d. $y=10 \cdot 2.3^{x}$

$$
\begin{aligned}
& \text { c. } f(x)=e^{x} \\
& y^{\prime}=e^{x} \ln e=e^{x}(1)=e^{x}
\end{aligned}
$$

$$
y^{\prime}=(10)\left(2.3^{x}\right) \ln 2.3
$$

Example 2 Differentiate the following.
a. $y=3^{2 x+1}$
b. $f(x)=7^{x^{2}}$

$$
y^{\prime}=3^{2 x+1}(\ln 3)(2)
$$

$$
y^{\prime}=7^{x^{2}}(\ln 7)(2 x)
$$

$$
\text { If } y=\log _{a} x, \text { then } y^{\prime}=\frac{1}{x}\left(\frac{1}{\ln a}\right)=\frac{1}{x \ln a}
$$

Example 3 Differentiate the following. common \log
$\begin{aligned} & \text { a. } y=\log _{8} x\end{aligned} \quad$ b. $y=\log x=10 g$
a. $y=\log _{8} x$
b. $y=\log x=\log _{10} x$

$$
y^{\prime}=\left(\frac{1}{x}\right)\left(\frac{1}{\ln 8}\right)
$$

$$
\begin{gathered}
\text { c. } y=3 \log _{4} x \\
y^{\prime}=(3)\left(\frac{1}{x}\right)\left(\frac{1}{\ln 4}\right)
\end{gathered}
$$

$$
y^{\prime}=\left(\frac{1}{x}\right)\left(\frac{1}{\ln 10}\right)
$$

Example 4 Differentiate the following.
a. $f(x)=\log _{3}\left(x^{2}+1\right)$
b. $y=x^{3} \log _{5} x \quad$ product

$$
f^{\prime}(x)=\frac{1}{x^{2}+1} \cdot \frac{1}{\ln 3} \cdot 2 x
$$

$$
y^{\prime}=x^{3} \cdot \frac{1}{x} \cdot \frac{1}{\ln 5}+\left(\log _{5} x\right)\left(3 x^{2}\right)
$$

Example 5
In 2012, 34.2\% of all glass containers were recycled. A beverage company used $400,000 \mathrm{lb}$ of glass containers per year. After recycling, the amount of glass, in pounds, still in use after t
years is given by $\quad N(t)=400,000(0.341)^{t} \quad N^{\prime}(t)=400,000(0.341)^{t}(1 n .341)$
a. Find $N(4)$ and explain its meaning.

$$
N(4)=5408.51
$$

b. Find $N^{\prime}(4)$ and explain its meaning.

$$
N^{\prime}(4)=-5818.87
$$

After 4 years, there are still 5408 lbs of glass incuse.

After 4 years, the amount of glass still in use is decreasing by $5818 \mathrm{lbs} /$ year.

