Section 2.6 Derivatives of a^x and $log_a x$

If
$$y = a^x$$
, then $y' = a^x (\ln a)$

Example 1 Differentiate the following.

a.
$$y = 2^x$$

b.
$$y = (1.4)^x$$

c.
$$f(x) = e^x$$

d.
$$y = 10 \cdot 2.3^x$$

Example 2 Differentiate the following.

a.
$$y = 3^{2x+1}$$

b.
$$f(x) = 7^{x^2}$$

If
$$y = log_a x$$
, then $y' = \frac{1}{x} \left(\frac{1}{\ln a} \right) = \frac{1}{x \ln a}$

Example 3 Differentiate the following.

a.
$$y = log_8 x$$

b.
$$y = \log x$$

c.
$$y = 3 \log_4 x$$

Example 4 Differentiate the following.

a.
$$f(x) = log_3(x^2 + 1)$$

b.
$$y = x^3 log_5 x$$

Example 5

In 2012, 34.2% of all glass containers were recycled. A beverage company used 400,000 lb of glass containers per year. After recycling, the amount of glass, in pounds, still in use after t years is given by $N(t) = 400,000(0.341)^t$

- a. Find *N*(4) and explain its meaning.
- b. Find N'(4) and explain its meaning.

Section 2.6 Derivatives of a^x and $log_a x$

If
$$y = a^x$$
, then $y' = a^x (\ln a)$

Example 1 Differentiate the following.

a.
$$y = 2^x$$

c.
$$f(x) = e^x$$

$$y'=e^{x}|_{ne}=e^{x}(1)=e^{x}$$

b.
$$y = (1.4)^x$$

 $y' = 1.4^x (ln 1.4)$

d.
$$y = 10 \cdot 2.3^x$$

Example 2 Differentiate the following.

a.
$$y = 3^{2x+1}$$

b.
$$f(x) = 7^{x^2}$$

b.
$$f(x) = 7^{x^2}$$

 $y' = 7^{x^2} (ln7)(2x)$

If
$$y = log_a x$$
, then $y' = \frac{1}{x} \left(\frac{1}{\ln a} \right) = \frac{1}{x \ln a}$

Differentiate the following. Common log b. $y = \log x = \log x$ Example 3

a.
$$y = log_8 x$$

$$y' = \left(\frac{1}{x}\right)\left(\frac{1}{\ln 8}\right)$$

b.
$$y = \log x = \log x$$

$$c. y = 3 \log_4 x$$

$$y' = (3)(\frac{1}{2})(\frac{1}{104})$$

Example 4 Differentiate the following.

a.
$$f(x) = log_3(x^2 + 1)$$

$$f'(x) = \frac{1}{x^2 + 1} \cdot \frac{1}{\ln 3} \cdot 2x$$

b.
$$y = x^3 log_5 x$$

b.
$$y = x^{3}log_{5}x$$
 product
 $y' = x \cdot \frac{1}{x} \cdot \frac{1}{\ln 5} + (log_{5} \times)(3x^{2})$

Example 5

In 2012, 34.2% of all glass containers were recycled. A beverage company used 400,000 lb of glass containers per year. After recycling, the amount of glass, in pounds, still in use after t years is given by $N(t) = 400,000(0.341)^t$ $N'(t) = 400,000(0.341)^t$ $N'(t) = 400,000(0.341)^t$

$$N(t) = 400,000(0.341)^t$$

a. Find N(4) and explain its meaning.

After 4 years, there are still 5408 165 of glass in use. b. Find N'(4) and explain its meaning.

After 4 years, the amount of glass still in use is decreasing by 5818 165/year.