Section 3.1 First Derivatives and Curve Sketching

A of a function is any numbe	r in the domain for which the tangent line is
horizontal () or for whic	h the derivative does not exist.
A function is whe A function is whe	
A function has a	when f'(x) changes from
A function has a	when f'(x) changes from
Example 1: Consider the graph of $f(x) = -x^3 + 27x - 45$. Discuss intervals where f(x) is increasing or decred Does f(x) have a relative max or min? Use desmos.com t	

a) Find the critical values for f(x).

b) Make a Number Line for f'(x)

c)	Give the open intervals where the function is
	Increasing
	Decreasing

Find the points in (x, y) form where the function has relative extrema.
Relative Max
Relative Min

Example 2: $f(x) = 5x^4 + 20x^3$

a) Find the critical values for f(x).

b) Make a Number Line for f'(x)

- c) Give the open intervals where the functions is Increasing
 Decreasing
- d) Find the points in (x, y) form where the function has relative extrema. Relative Max

Relative Min

e) Compare your findings to the graph of $f(x) = 5x^4 + 20x^3$

Example 3:

Consider the graph of f(x). Explain the idea of a critical value. Then determine which x-values are critical values, and state why.

Example 4:

Draw a graph to match this description. The function f(x) has a positive derivative over $(-\infty, 1)$ and (1, 5), a negative derivative over $(5, \infty)$, and a derivative equal to 0 at x=1.

Which of the following graphs matches the description?

Example 5:

Find any relative extrema of the function $f(x) = x^3 - 3x^2$. Identify intervals over which the function is increasing and over which it is decreasing. Then sketch a graph of the function.

a) Find the critical values for f(x).

b) Make a Number Line for f'(x)

c) Increasing

Decreasing

d) Relative Max Relative Min

Example 2: $f(x) = 5x^4 + 20x^3$

a) Find the critical values for f(x).

b) Make a Number Line for f'(x)-3 $C \vee$

$$f'(-4) = -$$

 $f'(-1) = +$
 $f'(1) = +$

c) Give the open intervals where the functions is Increasing (-3,0)(0,0)Decreasing (-3,-3)

d) Find the points in (x, y) form where the function has relative extrema. Relative Max None $f(-3) = 5(-3)^4 + 20(-3)^3 = -135$ Relative Min (-3, -135)

£

e) Compare your findings to the graph of
$$f(x) = 5x^4 + 20x^3$$

Example 3:

Example 4:

Draw a graph to match this description. The function f(x) has a positive derivative over $(-\infty, 1)$ and (1, 5), a negative derivative over $(5, \infty)$, and a derivative equal to 0 at x=1.

Which of the following graphs matches the description?

Example 5:

Find any relative extrema of the function $f(x) = x^3 - 3x^2$. Identify intervals over which the function is increasing and over which it is decreasing. Then sketch a graph of the function.

a) Find the critical values for f(x). $f'(x) = 3x^2 - 6x = 0$ $3 \times (x-z) = 0$ x=0 x=2 b) Make a Number Line for f'(x)Ô 24

c) Increasing
$$(-\infty, 0)(2, \infty)$$

Decreasing $(0, 2)$

Relative Max (0,0) d) Relative Min (2,-4)

