A graph of a function is \qquad if \qquad
A graph of a function is \qquad if \qquad

An \qquad point happens where the \qquad changes.

It must occur when $f^{\prime \prime}(x)=0$ or when $f^{\prime \prime}(x)$ does not exist.

Shape of Graph	$f^{\prime}(x)>0$	$f^{\prime}(x)<0$
$f^{\prime \prime}(x)>0$		
$f^{\prime \prime}(x)<0$		

Example 1

Identify the points of infection and the intervals where the function is concave up or concave down.

The Second Derivative Test for Relative Extrema

Suppose that c is a critical value for the function (means that $f^{\prime}(c)=0$).
Then $f(c)$ is a relative minimum if \qquad and $f(c)$ is a relative maximum if \qquad

Example 2:

Sketch the graph that possesses the characteristics listed. f is concave down at the point $(1,6)$, concave up at the point ($9,-2$), and has an inflection point at (5,2).

Example 3:

Sketch the graph that possesses the characteristics listed.
$f^{\prime}(2)=0, \quad f^{\prime \prime}(2)<0, \quad f(2)=2 ;$
$f^{\prime}(-2)=0, \quad f^{\prime \prime}(-2)>0, \quad f(-2)=-4$;
$f^{\prime \prime}(0)=0, \quad f(0)=-1$;

Example 4:

The percentage of the US civilian labor force aged 45-54 can be modeled by the function given by $f(x)=$ $-0.0115 x^{2}+0.125 x+81.7$, where x is the number of years after 1994 . Find the year in which the percentage of the labor force aged 45-54 was highest.

The first and second derivatives enhance our ability to sketch curves. Use the first derivative to find critical values, increasing, decreasing, and relative extrema. Use the second derivative to find possible inflection points, concave up, concave down, and inflection points. Put all the information together for a complete graph. Check with a graphing calculator or using desmos.com.

Example 5:

$$
f(x)=x^{3}+3 x^{2}-9 x-13
$$

Intervals where $f(x)$ is	Points in (x, y) form
Increasing	Relative Max
Decreasing	Relative Min
Concave up	Inflection point
Concave down	Don't forget to sketch

$$
f(x)=x^{4}-4 x^{3}+10
$$

Intervals where $f(x)$ is	Points in (x, y) form
Increasing	Relative Max
Decreasing	Relative Min
Concave up	Inflection point
Concave down	Don't forget to sketch

Section 3.2 Second Derivative and Curve Sketching
A graph of a function is \qquad concave up $\uparrow \uparrow$ if \qquad
A graph of a function is \qquad concave down \sim if \qquad

An \qquad inflection point happens where the \qquad concavity changes.

It must occur when $f^{\prime \prime}(x)=0$ or when $f^{\prime \prime}(x)$ does not exist.

Shape of Graph	increasing $f^{\prime}(x)>0$	$f^{\prime}(x)<0$
$f^{\prime \prime}(x)>0$ Concave Up		
$f^{\prime \prime}(x)<0$		
ConCave down		

Example 1
Identify the points of infection and the intervals where the function is concave up or concave down.

Concave up $(-\infty, 1)$
concave down $(1, \infty)$
Inflection Point (x, y) at $(1,2)$

Concave up $(-1, \infty)$ Concave up concave down $(-\infty,-1)$ inflection point at $(-1,3)$

The Second Derivative Test for Relative Extrema
Suppose that c is a critical value for the function (means that $f^{\prime}(c)=0$).
Then $f(c)$ is a relative minimum if $\quad f^{\prime \prime}(x)>0$
and $f(c)$ is a relative maximum if $\quad f^{\prime \prime}(x)<0 \quad 凤$

Example 2:

Sketch the graph that possesses the characteristics listed. f is concave down at the point $(1,6)$, concave up at the point $(9,-2)$, and has an inflection point at (5,2).

Example 3:

Sketch the graph that possesses the characteristics listed.

$f^{\prime}(2)=0, \quad f^{\prime \prime}(2)<0, \quad f(2)=2 ; \quad$ point $(2,2) \quad$ concave down, rel. max $f^{\prime}(-2)=0, \quad f^{\prime \prime}(-2)>0, f(-2)=-4$; point $(-2,-4)$ concave up, rel. min $f^{\prime \prime}(0)=0, \quad f(0)=-1 ;$ point $(0,-1)$ inflection point

Example 4:

The percentage of the US civilian labor force aged 45-54 can be modeled by the function given by $f(x)=$ $-0.0115 x^{2}+0.125 x+81.7$, where x is the number of years after 1994. Find the year in which the percentage of the labor force aged $45-54$ was highest.

$$
\begin{aligned}
f^{\prime}(x)=-0.0230 x & +0.125=0 \\
-0.023 x & =-0.125 \\
x & =\frac{-0.125}{-0.023} \\
x & =5.434-\text { max }
\end{aligned}
$$

$$
\text { year }=1994+5.43 \approx 1999
$$

The first and second derivatives enhance our ability to sketch curves. Use the first derivative to find critical values, increasing, decreasing, and relative extrema. Use the second derivative to find possible inflection points, concave up, concave down, and inflection points. Put all the information together for a complete graph. Check with a graphing calculator or using desmos.com.

Example 5:

$$
f(x)=x^{3}+3 x^{2}-9 x-13
$$

$$
\begin{gathered}
f^{\prime}(x)=3 x^{2}+6 x-9 \\
3\left(x^{2}+2 x-3\right)=0 \\
3(x+3)(x-1)=0 \\
x+3=0 \quad x-1=0 \\
x=-3 \quad x=1
\end{gathered}
$$

$$
f^{\prime}(-4)=+15
$$

$$
f^{\prime}(0)=-9
$$

$$
f^{\prime}(2)=+15
$$

$$
f^{\prime \prime}(x)=6 x+6
$$

$$
6 x+6=0
$$

$$
f^{\prime \prime}(-2)=-6
$$

$$
6 x=-6
$$

$$
f^{\prime \prime}(0)=6
$$

$$
x=-1
$$

Intervals where $f(x)$ is	Points in (x, y) form
Increasing $(-\infty,-3) \cup(1, \infty)$	Relative Max $(-3,14)$
Decreasing $(-3,1)$	Relative Min $\quad(-3)=14$
Concave up $(-1, \infty)$	$f(1)=-18)$
Concave down $\quad(-\infty,-1)$	Inflection point forget to sketch

Example 6:

$$
f(x)=x^{4}-4 x^{3}+10
$$

$$
f^{\prime \prime}(-1)=+36
$$

$$
f^{\prime \prime}(1)=-12
$$

$$
f^{\prime \prime}(3)=+36
$$

$$
\begin{aligned}
& f^{\prime \prime}(x)=12 x^{2}-24 x \\
& \begin{array}{l}
12 x^{2}-24 x=0 \\
12 x(x-2)=0
\end{array} \\
& \begin{array}{l}
12 x^{2}-24 x=0 \\
12 x(x-2)=0
\end{array} \\
& 12 x=0 \quad x-2=0 \\
& \begin{array}{rlr}
12 x & =0 & x-2=0 \\
x & =0 & x=2
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(x)=4 x^{3}-12 x^{2} \\
& 4 x^{3}-12 x^{2}=0 \\
& 4 x^{2}(x-3)=0 \\
& 4 x^{2}=0 \quad x-3=0 \\
& x^{2}=0 \quad x=3
\end{aligned}
$$

$$
\begin{aligned}
& f^{\prime}(-1)=-16 \\
& f^{\prime}(1)=-8 \\
& f^{\prime}(4)=64
\end{aligned}
$$

