Absolute Maximum

Absolute Minimum

Extreme Value Theorem

If a function f is continuous on a closed interval [a, b], then f has both a maximum and minimum value on the interval [a, b].

How to find Absolute Extrema on a closed interval [a, b]

- 1. Find critical values -where f'(x)=0 or f' undefined
- 2. Evaluate f(x) at all the critical values and at the endpoints a and b
- 3. The largest value is max, the smallest value is min

Example 1: Find the absolute extrema of $f(x) = 4x - x^2$ over the interval [1, 4]

Example 2: Find the absolute extrema of $f(x) = x^3 - 3x + 2$ on $[-2, \frac{3}{2}]$

Example 3: Find the absolute extrema of $f(x) = 2x^3 - 15x^2 + 36x$ on [1, 5]

Example 4: Find the absolute extrema of $f(x) = \sqrt{9 - x^2}$ on [-1,2]

Example 5: Find the absolute extrema of $f(x) = x + \frac{9}{x}$ on [3, 10]

What if the interval isn't closed? Example 6: Find the absolute extrema of $f(x) = x^2 - 10x$ over each interval. a. $(-\infty, \infty)$ b. [4, 10]

Absolute Maximum THE largest maximum, highest Absolute Minimum THE smallest minimum, lowest

Absolute Max at x=b Absolute Min at x=ct

Extreme Value Theorem

abs. abs.

plug into original

If a function f is continuous on a closed interval [a, b], then f has both a maximum and minimum value on the interval [a, b].

How to find Absolute Extrema on a closed interval [a, b]

- 1. Find critical values -where f'(x)=0 or f' undefined
- 2. Evaluate f(x) at all the critical values **and** at the endpoints a and b
- 3. The largest value is max, the smallest value is min

Example 1: Find the absolute extrema of $f(x) = 4x - x^2$ over the interval [1, 4]

f'(x) = 4 - 2x 0 = 4 - 2x	evaluate $P(x)$ F(z) = 4	The absolute maximum value of f is $\frac{4}{x-2}$ when $\frac{x-2}{x-2}$	
2x=4 x=2	f(1) = 3 f(4) = 0	The absolute minimum value	
critical Value		of f is where	

Example 2: Find the : $f'(x) = 3x^2 - 3$ $0 = 3x^2 - 3$ $3 = 3x^2$ $1 = x^2$ + 1 = x	absolute extrema of $f(x) = x^{2}$ f(1) = 0 f(-1) = 4 f(-2) = 0 f(-2) = 7/8	$x^3 - 3x + 2 \text{ on } [-2, \frac{3}{2}]$ The abs maxualue when $x = -1$ The abs min Very when $x = 1$ and	e is $\frac{4}{0}$ alue is $\frac{0}{1 \times z - 2}$
Example 3: Find the a $f'(x) = 6x^2 - 30x + 6$ $0 = 6(x^2 - 5x + 6)$ 0 = 6(x - 2)(x - 2)	absolute extrema of $f(x) = 2x$ 36 6 7 7 7 7 7 7 7 7	$x^{3} - 15x^{2} + 36x \text{ on } [1, 5]$) = 28) = 27) = 23 Abs Min 5) = 55 Abs Mark	

$$f(x) = (9 - x^{2})^{\frac{1}{2}}$$
Example 4: Find the absolute extrema of $f(x) = \sqrt{9 - x^{2}}$ on [-1,2]

$$f'(x) = \frac{1}{2}(9 - x^{2})^{\frac{1}{2}}(-2x)$$
numerator = 0
 $-x = 0$
 $x = 0$
 $f'(x) = \frac{-x}{2(9 - x^{2})}$
 $f'(x) = \frac{-x}{\sqrt{9 - x^{2}}}$
Example 5: Find the absolute extrema of $f(x) = x + \frac{9}{x}$ on [3, 10]
 $f(x) = x + 9x^{-1}$
 $f'(x) = 1 - 9x^{-2}$
 $f'(x) = \frac{x^{1}}{x^{2}} - \frac{9}{x^{2}}$
 $f'(x) = \frac{x^{2} - 9}{x^{2}}$
What if the interval isn't closed?

Example 6: Find the absolute extrema of $f(x) = x^2 - 10x$ over each interval. a. $(-\infty, \infty)$ b. [4, 10]f(5) = -25 Abs. Min

$$f(x) = 2x - 10$$

 $0 = 2x - 10$
 $10 = 2x$
 $5 = x$

 $x^{2} = 10x$ over each interval. b. [4, 10] f(5) = -25 Abs. Min f(4) = -24f(10) = 0 Abs. Max

