Section 3.7 Elasticity of Demand

A demand function, $q=D(x)$, relates the quantity q of units purchased at the price x, in dollars per unit. The demand function is usually a decreasing function. Why?

We often need to know how a small increase in price will affect demand and total revenue. A small increase in price may result in a relatively small drop in demand, but \qquad . In this case, a price increase may be wise.

However, if a small price increase results in a significant drop in demand and \qquad , then the price increase may not be wise. To measure the sensitivity of demand to a small increase in price, economists calculate the elasticity of demand.

Example 1:

Klix Video games has found that the demand for one of its popular video games is given by $q=D(x)=120-20 x$, where q is the number of games rented per day at x dollars per rental.
a. If the price per rental is currently $\$ 2$, find the demand and total revenue.
b. If the price is raised to $\$ 2.20$, find the demand and total revenue.
c. Interpret these results.
d. If the price per rental is currently $\$ 5$, find the demand and total revenue.
e. If the price is increased to $\$ 5.50$, find the demand and total revenue.
f. Interpret these results.

The elasticity of demand E is given as a function of price x by

$$
E(x)=\frac{-x \cdot D^{\prime}(x)}{D(x)}
$$

For a particular value of the price x :

1. Demand is inelastic if $E(x)<1$.

A small increase in price creates an increase in revenue. If demand is inelastic, then revenue is increasing.
2. Demand has unit elasticity if $E(x)=1$.

The demand has unit elasticity when revenue is at a maximum.
3. Demand is elastic if $E(x)>1$.

A small increase in price creates a decrease in revenue. If demand is elastic, then revenue is decreasing.

Example 2: Klix Video games has found that the demand for one of its popular video games is given by $q=D(x)=120-20 x$, where q is the number of games rented per day at x dollars per rental.
a. Find the elasticity of demand as a function of x.
b. Find the elasticity at $x=2$ and at $x=5$. Interpret the meaning of these values of the elasticity.
c. Find the value of x for which $E(x)=1$. What is the significance of this price?

Example 3: Wayne's Honey Farm sells honey-based moisturizing cream for $\$ 12$ per jar. At this price, it sells 14,500 jars per month. To see if the price is too high or too low, Wayne's Honey Farm raises the price to $\$ 18$ per jar. At this price, it sells 10,750 jars per month. The demand function is $q=D(x)=-625 x+22,000$ where x is the price in dollars.
a. Find the elasticity of demand, $E(x)$.
b. Find $E(12)$ and $E(18)$ and interpret the meaning of each result.
c. Find the price at which demand has unit elasticity and interpret its meaning.

Section 3.7 Elasticity of Demand
A demand function, $q=D(x)$, relates the quantity q of units purchased at the price x, in dollars per unit. The demand function is usually a decreasing function. Why?
as price increases, demand decreases
We often need to know how a small increase in price will affect demand and total revenue. A small increase in price may result in a relatively small drop in demand, but \qquad higher revenue . In this case, a price increase may be wise.

However, if a small price increase results in a significant drop in demand and \qquad lower reveriue then the price increase may not be wise. To measure the sensitivity of demand to a small increase in price, economists calculate the elasticity of demand.

Example 1:
Klix Video games has found that the demand for one of its popular video games is given by $q=D(x)=120-20 x$, where q is the number of games rented per day at x dollars per rental.
a. If the price per rental is currently $\$ 2$, find the demand and total revenue.
b. If the price is raised to $\$ 2.20$, find the demand and total revenue.
c. Interpret these results.
d. If the price per rental is currently $\$ 5$, find the demand and total revenue.
e. If the price is increased to $\$ 5.50$, find the demand and total revenue.
f. Interpret these results.
a) if $x=2$

$$
\begin{aligned}
& D(2)=120-20(2)=80 \\
& R(2)=\text { price } * \text { sold }=2(80)=160
\end{aligned}
$$

b) When $x=2,20$

$$
\begin{aligned}
& \text { when } x=2.20 \\
& D(2.20)=120-20(2.20)=76 \\
& R(2.20)=(2.20)(76)=\$ 167.20
\end{aligned}
$$

d) when $x=5$

$$
\begin{aligned}
& \text { when } x=5 \\
& D(5)=120-20(5)=20 \\
& R(5)=5(20)=100
\end{aligned}
$$

e) when $x=5.50$

$$
\begin{aligned}
& \text { when } x=5.50 \\
& D(5.50)=120-20(5.50)=10 \\
& R(5.50)=(5.50)(10)=\$ 55
\end{aligned}
$$

C) small increase in price results in higher revenue
p) small increase in price results in price lower revenue

The elasticity of demand E is given as a function of price x by

$$
E(x)=\frac{-x \cdot D^{\prime}(x)}{D(x)}
$$

For a particular value of the price x :

1. Demand is inelastic if $E(x)<1$.

A small increase in price creates an increase in revenue. If demand is inelastic, then revenue is increasing.
2. Demand has unit elasticity if $E(x)=1$.

The demand has unit elasticity when revenue is at a maximum.
3. Demand is elastic if $E(x)>1$.

A small increase in price creates a decrease in revenue. If demand is elastic, then revenue is decreasing.

Example 2: Klix Video games has found that the demand for one of its popular video games is given by $q=D(x)=120-20 x$, where q is the number of games rented per day at x dollars per rental.
a. Find the elasticity of demand as a function of x.
b. Find the elasticity at $x=2$ and at $x=5$. Interpret the meaning of these values of the elasticity.
c. Find the value of x for which $E(x)=1$. What is the significance of this price?
a) $E(x)=\frac{-x D^{\prime}(x)}{D(x)}=\frac{-x(-20)}{120-20 x}=\frac{20 x}{120-20 x}$
b) $E(2)=\frac{20(2)}{120-20(2)}=\frac{40}{80}=\frac{1}{2}$

At $\$ 2.00$ per game rental, the demand is inelastic and a small increase in price causes revenue to increase

$$
E(5)=\frac{20(5)}{120-20(5)}=\frac{100}{20}=5
$$

At $\$ 5$ per game rental, the demand is elastic and a small increase in price causes revenue to drop
c)

$$
\begin{aligned}
E(x) & =1 \\
\frac{20 x}{120-20 x} & =1 \\
20 x & =120-20 x \\
40 x & =120 \\
x & =3
\end{aligned}
$$

when the price of the rental is $\$ 3$
the revenue is maximized.

Example 3: Wayne's Honey Farm sells honey-based moisturizing cream for $\$ 12$ per jar. At this price, it sells 14,500 jars per month. To see if the price is too high or too low, Wayne's Honey Farm raises the price to $\$ 18$ per jar. At this price, it sells 10,750 jars per month. The demand function is $q=D(x)=-625 x+22,000$ where x is the price in dollars.
a. Find the elasticity of demand, $E(x)$.
b. Find $E(12)$ and $E(18)$ and interpret the meaning of each result.
c. Find the price at which demand has unit elasticity and interpret its meaning.
a) $E(x)=\frac{-x D^{\prime}(x)}{D(x)}=\frac{-x(-625)}{-625 x+2200}=\frac{625 x}{-625 x+2200}$
b) $E(12)=\frac{625(12)}{-625(12)+2200}=.517$

At $\$ 12$ a jar, the demand is inelastic and a small increase in price causes revenue to increase.

$$
E(18)=\frac{625(18)}{-625(18)+2200}=1.046
$$

At $\$ 18$ a jar, the demand is elastic and a small increase in price calces. revenue to decrease.
c) $E(x)=1$

$$
\begin{aligned}
& \frac{625 x}{-625 x+2200}=1 \\
& 625 x=-625 x+2200 \\
& 1250 x=22000 \\
& x=\frac{22000}{1250}=17.60
\end{aligned}
$$

At $\$ 17.60$ per jar, the revenue is maximized

