Antidifferentiation is the process of differentiation performed in reverse. Given a function f, we find another function F such that  $\frac{d}{dx}F(x) = f(x)$ . The function F is an antiderivative of f.

Example 1: If we found f'(x) = 2x, then what was f(x)?

## Theorem

The <u>antiderivative</u> of f(x) is the set of functions F(x) + C such that  $\frac{d}{dx}[F(x) + C] = f(x)$ . The constant C is called the <u>constant of integration</u>.

If F is an antiderivative of f, we write  $\int f(x) dx = F(x) + C$ .

This equation is read as "the antiderivative of f(x), with respect to x, if F(x) + C" or as "the integral of f(x), with respect to x, is F(x) + C." The expression on the left side is called an **indefinite integral.** The symbol  $\int$  is the integral sign, and f(x) is the integrand. The symbol dx can be regarded as indicating that x is the variable of integration, similar to d/dx indicating that the expression that follows it is to be differentiation with respect to x.

Example 2: Determine these indefinite integrals. Find the antiderivative of each integrand. How can you check your answer? a)  $\int 8 dx$  b)  $\int 3x^2 dx$ 

c)  $\int e^x dx$  d)  $\int \frac{1}{x} dx, x \neq 0$ 

## **Rules for Antiderivatives**

 $\int k \, dx = kx + C$ 1. Constant Rule  $\int x^n \, dx = \frac{1}{n+1} x^{n+1} + C$ 2. Power Rule (where  $n \neq 1$ )  $\int \frac{1}{x} dx = \ln|x| + C \text{ and for } x > 0, \int \frac{1}{x} dx = \ln x + C$ Natural Logarithm Rule 3. Exponential Rule (base e and  $a \neq 0$ )  $\int e^{ax} \, dx = \frac{1}{a} e^{ax} + C$ 4.

The Power Rule for Antiderivatives can be viewed as a two-step process:



Example 3: Determine these indefinite integrals using the power rule for antiderivatives. a).  $\int x^8 dx$ b).  $\int x^2 dx$ 

c) 
$$\int \sqrt{x} \, dx$$
 d)  $\int \frac{1}{x^3} \, dx, x \neq 0$ 

Example 4: Determine these indefinite integrals using the exponential rule for antiderivatives.

a). 
$$\int e^{4x} dx$$
 b).  $\int e^{2x} dx$  c)  $\int e^{-x} dx$ 

Properties of Antiderivatives

1. A constant multiplier can be factored to the front of the indefinite integral.

$$\int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx$$

2. The antiderivative of a sum or different is the sum or difference of the antiderivatives.

$$\int f(x) \pm g(x) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

Example 5: Find the following indefinite integrals. Assume x > 0.

a) 
$$\int (x^4 - x + 5) dx$$
 b)  $\int (3x^5 + 7x^2) dx$ 

c) 
$$\int (x-3)^2 dx$$
 d)  $\int \frac{3x+2x^4}{x} dx$ 

e) 
$$\int \frac{4}{x} dx$$

Example 6: Initial Condition: Use the information given to find C.  $F(x) = \int (2x + 3) dx$  and F(1) = -2

5. 
$$\int x^{1/4} dx$$
  
7.  $\int (x^2 + x - 1) dx$   
9.  $\int (2t^2 + 5t - 3) dt$   
11.  $\int \frac{1}{x^3} dx$   
13.  $\int \sqrt[6]{x} dx$   
15.  $\int \sqrt{x^5} dx$   
17.  $\int \frac{dx}{x^4}$   
19.  $\int \frac{10}{x} dx$   
21.  $\int \left(\frac{3}{x} + \frac{5}{x^2}\right) dx$   
23.  $\int \frac{-7}{\sqrt[3]{x^2}} dx$   
25.  $\int e^{3x} dx$   
27.  $\int 2e^{2x} dx$   
29.  $\int 6e^{x/2} dx$   
31.  $\int 100e^{0.02x} dx$ 

Antidifferentiation is the process of differentiation performed in reverse. Given a function f, we find another function F such that  $\frac{d}{dx}F(x) = f(x)$ . The function F is an antiderivative of f.

Example 1: If we found f'(x) = 2x, then what was f(x)?

$$f'(x) = 2x \quad \text{then} \quad f(x) = x^2 \qquad \text{In general} \\ x^2 + 5 \qquad f(x) = x^2 + C \\ x^2 - 17 \qquad \text{Theorem} \qquad x^2 - 17$$

The <u>antiderivative</u> of f(x) is the set of functions F(x) + C such that  $\frac{d}{dx}[F(x) + C] = f(x)$ . The constant C is called the constant of integration.

If F is an antiderivative of f, we write  
integral
$$\int f(x) dx = F(x) + C.$$
constant
variable

This equation is read as "the antiderivative of f(x), with respect to x, if F(x) + C" or as "the integral of f(x), with respect to x, is F(x) + C." The expression on the left side is called an **indefinite integral.** The symbol  $\int f$  is the integral sign, and f(x) is the integrand. The symbol dx can be regarded as indicating that x is the variable of integration, similar to d/dx indicating that the expression that follows it is to be differentiation with respect to x.

Example 2: Determine these indefinite integrals. Find the antiderivative of each integrand. How can you check your answer? b)  $\int 3x^2 dx$ =  $X^3 + C$ 

a)  $\int 8 dx$ 

= 8x + C

c)  $\int e^x dx$ 

= ex+C

d)  $\int \frac{1}{x} dx$ ,  $x \neq 0$ = ln |x| +C why absolute value? can't take the log of a negative number.

4

## **Rules for Antiderivatives**

1. Constant Rule  $\int k \, dx = kx + C$ 2. Power Rule (where n≠1)  $\int x^n \, dx = \frac{1}{n+1}x^{n+1} + C$ 3. Natural Logarithm Rule  $\int \frac{1}{x} dx = \ln|x| + C$  and for x > 0,  $\int \frac{1}{x} dx = \ln x + C$ 

4. Exponential Rule (base e and  $a \neq 0$ )  $\int e^{ax} dx = \frac{1}{a}e^{ax} + C$ 

The Power Rule for Antiderivatives can be viewed as a two-step process:



- 1. Increase the exponent by 1.
- 2. Divide the term by the new power.

Example 3: Determine these indefinite integrals using the power rule for antiderivatives.



**Properties of Antiderivatives** 

A constant multiplier can be factored to the front of the indefinite integral. 1.

$$\int c \cdot f(x) \, dx = c \cdot \int f(x) \, dx$$

The antiderivative of a sum or different is the sum or difference of the antiderivatives. 2.

$$\int f(x) \pm g(x) \, dx = \int f(x) \, dx \pm \int g(x) \, dx$$

Example 5: Find the following indefinite integrals. Assume x > 0.

a) 
$$\int (x^{4} - x + 5) dx$$
  

$$\frac{1}{5} \times 5 - \frac{1}{2} \times 2 + 5 \times + C$$
  

$$\int (x - 3)^{2} dx = \int x^{2} - 6 \times + 9 dx$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 5 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 5 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 5 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 5 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 5 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}{5} \times 7 + 7 \times + C$$
  

$$\frac{1}{5} \times 7 - \frac{1}$$

 $F(x) = \int (2x + 3) dx$  and F(1) = -2

$$F(x) = \int (2x+3) dx = x^{2}+3x + C$$
  

$$F(x) = \int (2x+3) dx = x^{2}+3x + C$$
  

$$F(x) = 1^{2}+3(1)+C = -2$$
  

$$4+C = -2$$
  

$$C = -6$$
  

$$F(x) = x^{2}+3x-6$$

WS in class  
5. 
$$\int x^{1/4} dx = \frac{44}{5} \times^{5/4} + C$$
  
7.  $\int (x^2 + x - 1) dx = \frac{1}{3} \times^3 + \frac{1}{2} \times^2 - x + C$   
9.  $\int (2t^2 + 5t - 3) dt = \frac{2}{3}t^3 + \frac{5}{2}t^2 - 3t + C$   
11.  $\int \frac{1}{x^3} dx = \int \chi^{-3} dx = -\frac{1}{2}\chi^{-2} + C$   
13.  $\int \sqrt[4]{x} dx = \int \chi^{-3} dx = -\frac{1}{2}\chi^{-2} + C$   
15.  $\int \sqrt{x^5} dx = \int \chi^{-4} dx = \frac{1}{-3}\chi^{-3} + C$   
16.  $\int \frac{10}{x} dx = 10 \ln |x| + C$   
17.  $\int \frac{dx}{x^4} = \int \chi^{-4} dx = \frac{1}{-3}\chi^{-3} + C$   
18.  $\int (\frac{3}{x} + \frac{5}{x^2}) dx = 3\ln |x| - 5\chi^{-1} + C$   
21.  $\int (\frac{3}{x} + \frac{5}{x^2}) dx = 3\ln |x| - 5\chi^{-1} + C$   
23.  $\int \frac{-7}{\sqrt[4]{x^2}} dx = \int -7\chi^{-\frac{7}{3}} dx = -21\chi^{\frac{1}{3}} + C$   
25.  $\int e^{3x} dx = \frac{1}{-3}e^{-3x} + C$   
26.  $\int e^{x/2} dx = -22e^{\frac{x}{2}} + C$   
27.  $\int 2e^{2x} dx = -22e^{\frac{x}{2}} + C$   
28.  $\int 100e^{0.02x} dx = 5000e^{-0.02x} + C$