Antidifferentiation is the process of differentiation performed in reverse. Given a function f, we find another function F such that $\frac{d}{d x} F(x)=f(x)$. The function F is an antiderivative of f.

Example 1: If we found $f^{\prime}(x)=2 x$, then what was $f(x)$?

Theorem

The antiderivative of $f(x)$ is the set of functions $F(x)+C$ such that $\frac{d}{d x}[F(x)+C]=f(x)$. The constant C is called the constant of integration.

If F is an antiderivative of f, we write

$$
\int f(x) d x=F(x)+C
$$

This equation is read as "the antiderivative of $f(x)$, with respect to x, if $F(x)+C$ " or as "the integral of $f(x)$, with respect to x, is $F(x)+C$." The expression on the left side is called an indefinite integral. The symbol \int is the integral sign, and $f(x)$ is the integrand. The symbol $d x$ can be regarded as indicating that x is the variable of integration, similar to $d / d x$ indicating that the expression that follows it is to be differentiation with respect to x .

Example 2: Determine these indefinite integrals. Find the antiderivative of each integrand. How can you check your answer?
a) $\int 8 d x$
b) $\int 3 x^{2} d x$
c) $\int e^{x} d x$
d) $\int \frac{1}{x} d x, x \neq 0$

Rules for Antiderivatives

1. Constant Rule $\int k d x=k x+C$
2. Power Rule (where $n \neq 1$)

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
$$

3. Natural Logarithm Rule $\int \frac{1}{x} d x=\ln |x|+C$ and for $x>0, \int \frac{1}{x} d x=\ln x+C$
4. Exponential Rule (base e and $a \neq 0$) $\quad \int e^{a x} d x=\frac{1}{a} e^{a x}+C$

The Power Rule for Antiderivatives can be viewed as a two-step process:

$$
\int x^{n} d x=\frac{1}{n+1} x^{n+1}+C \quad \begin{aligned}
& \text { 1. Increase the exponent by } 1 . \\
& \text { 2. Divide the term by the new power. }
\end{aligned}
$$

Example 3: Determine these indefinite integrals using the power rule for antiderivatives.
a). $\int x^{8} d x$
b). $\int x^{2} d x$
c) $\int \sqrt{x} d x$
d) $\int \frac{1}{x^{3}} d x, x \neq 0$

Example 4: Determine these indefinite integrals using the exponential rule for antiderivatives.
a). $\int e^{4 x} d x$
b). $\int e^{2 x} d x$
c) $\int e^{-x} d x$

Properties of Antiderivatives

1. A constant multiplier can be factored to the front of the indefinite integral.

$$
\int c \cdot f(x) d x=c \cdot \int f(x) d x
$$

2. The antiderivative of a sum or different is the sum or difference of the antiderivatives.

$$
\int f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x
$$

Example 5: Find the following indefinite integrals. Assume $x>0$.
a) $\int\left(x^{4}-x+5\right) d x$
b) $\quad \int\left(3 x^{5}+7 x^{2}\right) d x$
c) $\quad \int(x-3)^{2} d x$
d) $\quad \int \frac{3 x+2 x^{4}}{x} d x$
e) $\quad \int \frac{4}{x} d x$

Example 6: Initial Condition: Use the information given to find C .

$$
F(x)=\int(2 x+3) d x \text { and } F(1)=-2
$$

5. $\int x^{1 / 4} d x$
6. $\int\left(x^{2}+x-1\right) d x$
7. $\int\left(2 t^{2}+5 t-3\right) d t$
8. $\int \frac{1}{x^{3}} d x$
9. $\int \sqrt[6]{x} d x$
10. $\int \sqrt{x^{5}} d x$
11. $\int \frac{d x}{x^{4}}$
12. $\int \frac{10}{x} d x$
13. $\int\left(\frac{3}{x}+\frac{5}{x^{2}}\right) d x$
14. $\int \frac{-7}{\sqrt[3]{x^{2}}} d x$
15. $\int e^{3 x} d x$
16. $\int 2 e^{2 x} d x$
17. $\int 6 e^{x / 2} d x$
18. $\int 100 e^{0.02 x} d x$

Section 4.1 Antiderivatives and Integration
Antidifferentiation is the process of differentiation performed in reverse. Given a function f, we find another function F such that $\frac{d}{d x} F(x)=f(x)$. The function F is an antiderivative of f.

Example 1: If we found $f^{\prime}(x)=2 x$, then what was $f(x)$?
$f^{\prime}(x)=2 x$ then

$$
\begin{aligned}
f(x)= & x^{2} \\
& x^{2}+5
\end{aligned}
$$

In general

$$
f(x)=x^{2}+C
$$

Theorem

$$
x^{2}-17
$$

The antiderivative of $f(x)$ is the set of functions $F(x)+C$ such that $\frac{d}{d x}[F(x)+C]=f(x)$. The constant C is called the constant of integration.

This equation is read as "the antiderivative of $f(x)$, with respect to x, if $F(x)+C$ " or as "the integral of $f(x)$, with respect to x, is $F(x)+C$." The expression on the left side is called an indefinite integral. The symbol \int is the integral sign, and $f(x)$ is the integrand. The symbol $d x$ can be regarded as indicating that x is the variable of integration, similar to $d / d x$ indicating that the expression that follows it is to be differentiation with respect to x.

Example 2: Determine these indefinite integrals. Find the antiderivative of each integrand. How can you check your answer?
a) $\int 8 d x$
b) $\int 3 x^{2} d x$
$=8 x+c$
c) $\int e^{x} d x$
d) $\int \frac{1}{x} d x, x \neq 0$

Rules for Antiderivatives

1. Constant Rule

$$
\begin{aligned}
& \int k d x=k x+C \\
& \int x^{n} d x=\frac{1}{n+1} x^{n+1}+C
\end{aligned}
$$

2. Power Rule (where $n \neq 1$)
3. Natural Logarithm Rule $\int \frac{1}{x} d x=\ln |x|+C$ and for $x>0, \int \frac{1}{x} d x=\ln x+C$
4. Exponential Rule (base e and $a \neq 0$) $\quad \int e^{a x} d x=\frac{1}{a} e^{a x}+C$

The Power Rule for Antiderivatives can be viewed as a two-step process:

()

1. Increase the exponent by 1.
2. Divide the term by the new power.

Example 3: Determine these indefinite integrals using the power rule for antiderivatives.
a). $\int x^{8} d x$

c) $\int \sqrt{x} d x=\int X^{1 / 2} d x=$

Example 4: Determine these indefinite integrals using the exponential rule for antiderivatives.
$4=4$
a). $\int e^{4 x} d x=$
$\frac{1}{4} e^{4 x}+c$
b). $\int x^{2} d x=$

d) $\int_{x^{3}}^{1} d x, x \neq 0=\int X^{-3} d x$

$4=2$
b). $\int e^{2 x} d x=$

$$
a=-1
$$

c) $\int e^{-x} d x=$

Properties of Antiderivatives

1. A constant multiplier can be factored to the front of the indefinite integral.

$$
\int c \cdot f(x) d x=c \cdot \int f(x) d x
$$

2. The antiderivative of a sum or different is the sum or difference of the antiderivatives.

$$
\int f(x) \pm g(x) d x=\int f(x) d x \pm \int g(x) d x
$$

Example 5: Find the following indefinite integrals. Assume $x>0$.
a) $\int\left(x^{4}-x+5\right) d x$

$$
\frac{1}{5} x^{5}-\frac{1}{2} x^{2}+5 x+c
$$

c) $\int(x-3)^{2} d x=\int x^{2}-6 x+9 d x$

$$
\begin{aligned}
& \frac{1}{3} x^{3}-6\left(\frac{1}{2}\right) x^{2}+9 x+C \\
& \frac{1}{3} x^{3}-3 x^{2}+9 x+C
\end{aligned}
$$

e) $\int \frac{4}{x} d x$
$4 \int \frac{1}{x} d x$

$$
4 \ln x+c
$$

b) $\int\left(3 x^{5}+7 x^{2}\right) d x$

$$
\begin{aligned}
& 3\left(\frac{1}{6}\right) x^{6}+7\left(\frac{1}{3}\right) x^{3}+C \\
& \frac{1}{2} x^{6}+\frac{7}{3} x^{3}+C
\end{aligned}
$$

d) $\int \frac{3 x+2 x^{4}}{x} d x=\int \frac{3 x}{x}+\frac{2 x^{4}}{x} d x$

$$
\begin{aligned}
& =\int 3+2 x^{3} d x \\
& =3 x+2 \frac{1}{4} x^{4}+C \\
& =3 x+\frac{1}{2} x^{4}+C
\end{aligned}
$$

Example 6: Initial Condition: Use the information given to find C .

$$
\begin{aligned}
& F(x)=\int(2 x+3) d x \text { and } F(1)=-2 \\
& F(x)=\int(2 x+3) d x=x^{2}+3 x+C \\
& F(1)=1^{2}+3(1)+C=-2 \\
& 4+C=-2 \\
& C=-6
\end{aligned}
$$

$$
F(x)=x^{2}+3 x-6
$$

WS in class
5. $\int x^{1 / 4} d x=\frac{4}{5} x^{5 / 4}+C$
7. $\int\left(x^{2}+x-1\right) d x=\frac{1}{3} x^{3}+\frac{1}{2} x^{2}-x+C$
9. $\int\left(2 t^{2}+5 t-3\right) d t=\frac{2}{3} t^{3}+\frac{5}{2} t^{2}-3 t+C$
11. $\int \frac{1}{x^{3}} d x=\int x^{-3} d x=-1 / 2 x^{-2}+C$
13. $\int \sqrt[6]{x} d x=\int x^{1 / 6} d x=\frac{6}{7} x^{7 / 6}+C$
15. $\int \sqrt{x^{3}} d x=\int x^{5 / 2} d x=\frac{2}{7} x^{1 / 2}+C$
17. $\int \frac{d x}{x^{4}}=\int x^{-4} d x=\frac{1}{-3} x^{-3}+C$
19. $\int \frac{10}{x} d x=10 \ln |x|+C$
21. $\int\left(\frac{3}{x}+\frac{5}{x^{2}}\right) d x=3 \ln |x|-5 x^{-1}+C$
23. $\int \frac{-7}{\sqrt[3]{x^{2}}} d x=\int-7 x^{-4 / 3} d x=-21 x^{1 / 3}+C$
25. $\int e^{3 x} d x=\frac{1}{3} e^{3 x}+C$
27. $\int 2 e^{2 x} d x=e^{2 x}+C$
29. $\int 6 x^{x / 2} d x=12 e^{\frac{x}{2}}+C$
31. $\int 100 e^{0.02 x} d x=5000 e^{0.02 x}+C$

