Section 4.1 Antiderivatives and Integration

Antidifferentiation is the process of differentiation performed in reverse. Given a function f,
we find another function F such that ;—xF(x) = f(x). The function F is an antiderivative of f.

Example 1: If we found f'(x) = 2x, then what was f(x)?

Theorem
The antiderivative of f () is the set of functions F(x) + C such that ;—x [F(x) + C] = f(x).
The constant Cis called the constant of integration.

If F is an antiderivative of f, we write [f(x)dx =F(x)+C.

This equation is read as “the antiderivative of f(x), with respect to x, if F(x) + C” or as “the
integral of f(x), with respect to x, is F(x) + C.” The expression on the left side is called an
indefinite integral. The symbol f is the integral sign, and f (x) is the integrand. The symbol
dx can be regarded as indicating that x is the variable of integration, similar to d /dx indicating
that the expression that follows it is to be differentiation with respect to x.

Example 2: Determine these indefinite integrals. Find the antiderivative of each integrand.
How can you check your answer?
a) [8dx b) [ 3x?dx

c) [ e*dx d)fidx,x;to



Rules for Antiderivatives

1. Constant Rule [kdx =kx+C

2. Power Rule (where n#1) [x™dx = ﬁx"“ +C

3. Natural Logarithm Rule fidx = In|x| + C and for x > 0, fidx =Ilnx+C
4, Exponential Rule (base e and a # 0) feax dx = ie“x +C

The Power Rule for Antiderivatives can be viewed as a two-step process:

1. Increase the exponent by 1.
/ { - v 2. Divide the term by the new power.

Example 3: Determine these indefinite integrals using the power rule for antiderivatives.
a). [x®dx b). [ x?dx

c) [Vxdx d)fx—13dx,x¢0

Example 4: Determine these indefinite integrals using the exponential rule for antiderivatives.

a). [e**dx b). [ e?*dx c) [e ™ dx



Properties of Antiderivatives
1. A constant multiplier can be factored to the front of the indefinite integral.

fc-f(x)dxzc-ff(x)dx

2. The antiderivative of a sum or different is the sum or difference of the antiderivatives.

[ f@ 9 ax= [ e drs [ g0 dx

Example 5: Find the following indefinite integrals. Assume x > 0.

a) f(x*—x+5)dx b) [(3x° + 7x?) dx
c) f(x —3)%dx d) fw;—zx‘}dx
e) [2dx

Example 6: Initial Condition: Use the information given to find C.
F(x)=[(2x+3)dxand F(1) = =2
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