Section 4.3 Definite Integrals and Area

Let f be any continuous function over [a,b] and F be any antiderivative of f. Then the definite integral of f from a to b is $\int_a^b f(x)dx = F(b) - F(a)$.

Example 1: Evaluate the following.

a)
$$\int_{-1}^{4} (x^2 - x) dx$$

b)
$$\int_0^2 e^x dx$$

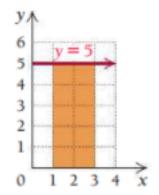
c)
$$\int_2^5 \frac{1}{x} dx$$

d)
$$\int_{-4}^{-1} \frac{1}{x} dx$$

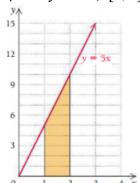
The area between the x-axis and the graph of the non-negative continuous function y=f(x) over [a,b] is found by evaluating the definite integral $\int_a^b f(x)dx=F(b)-F(a)$ where F is an antiderivative of f.

Example 2: Finding Area using Definite Integrals

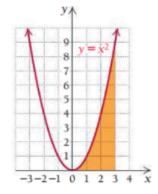
a)
$$y = 5$$
; [1,3]



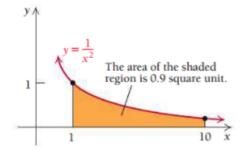
b)
$$y = 5x$$
; [1, 2]



c)
$$y = x^2$$
; [0,3]



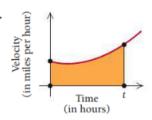
d)
$$y = \frac{1}{x^2}$$
 over [1, 10].



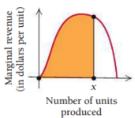
Section 4.3 Definite Integrals (Continued)

Explain what the shaded area represents. Example 3:

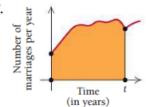
15.



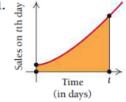
19.



17.



21.

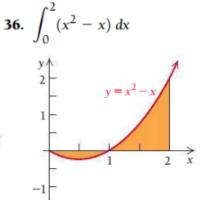


If a function has areas both below and above the x-axis, the definite integral gives the net total area, or the difference between the sum of the areas above the x-axis and the sum of the areas below the x-axis.

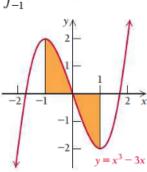
- If there is more area above the x-axis than below, then the definite integral is
- If there is more area below the x-axis than above, then the definite integral is ____
- If the areas above and below the x-axis are the same, then the definite integral is

Example 4: Evaluate each integral. Then state whether the result indicates that there is more area above or below the x-axis or that the areas above and below the axis are equal.

35. $\int_0^{1.5} (x-x^2) dx$

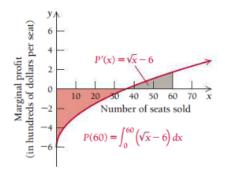


37. $\int_{-1}^{1} (x^3 - 3x) dx$



3

Example 5: Northeast Airlines determines that the marginal profit, in hundreds of dollars per seat, from the sale of x seats on a jet traveling from Atlanta to Kansas City is given by $P'(x) = \sqrt{x} - 6$. Find the total profit when 60 seats are sold.



Example 6: Kitchens-to-Please Contracting determines that the marginal cost, in dollars per square foot, of installing x square feet of kitchen countertop is given by $C'(x) = 4\sqrt[3]{x}$.

- a) Find the cost of installing 50 square feet of countertop.
- b) Find the cost of installing an extra 14 square feet of countertop after 50 square feet have already been installed.

Example 7: Melanie's Crafts estimate that its sales are growing continuously at a rate given by $S'(t) = 20e^t$, where S'(t) is in dollars per day, on day t.

- a) Find the accumulated sales for the first 5 days
- b) Find the accumulated sales from the beginning of the 2nd day through the 5th day.

Section 42 Definite Integrals and Area

Let f be any continuous function over [a, b] and F be any antiderivative of f. Then the definite integral of f from a to b is $\int_a^b f(x)dx = F(b) - F(a)$. * don't need to write +C with definite integrals

Example 1: Evaluate the following.

Example 1: Evaluate the following.

a)
$$\int_{-1}^{4} (x^{2} - x) dx = \frac{1}{3} x^{3} - \frac{1}{2} x^{2} \Big|_{-1}^{4} = \left(\frac{1}{3} \cdot 4^{3} - \frac{1}{2} \cdot 4^{2}\right) - \left(\frac{1}{3} \cdot (-1)^{3} - \frac{1}{2} (-1)^{2}\right)$$

means evaluate
$$= \left(\frac{1}{3} \cdot 4^{3} - \frac{1}{2} \cdot 4^{2}\right) - \left(-\frac{1}{3} \cdot \frac{1}{2}\right) = \frac{40}{3} - \left(-\frac{5}{6}\right)$$

$$= \frac{85}{6}$$

b)
$$\int_0^2 e^x dx = e^x \Big|_0^2 = e^2 - e^2 = 6.389$$

c)
$$\int_{2}^{5} \frac{1}{x} dx = |n|X||_{2}^{5} = |n5 - |n2| = .916$$

d)
$$\int_{-4}^{-1} \frac{1}{x} dx = \ln|x| \int_{-4}^{-1} = \ln|-1| - \ln|-4| = \ln|-1| - \ln|4|$$

= -1.386

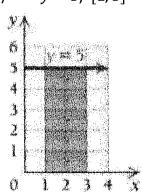
The area between the x-axis and the graph of the non-negative continuous function y = f(x) over [a, b] is found by evaluating the definite integral $\int_a^b f(x)dx = F(b) - F(a)$ where F is an antiderivative of f.

$$y = f(x)$$

$$A = \int_{a}^{b} f(x) dx = F(b) - F(a)$$

Example 2: Finding Area using Definite Integrals

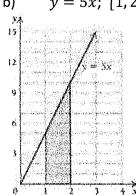
a)
$$y = 5$$
; [1, 3]



using Definite Integrals
$$A = \int_{5}^{3} dx = 5x \Big|_{5}^{3} = 5(3) - 5(1) = 10$$

$$Constant rule$$

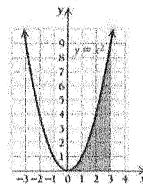
b)
$$y = 5x$$
; [1, 2]



$$A = \int 5 \times dx = \frac{5}{2} \times \frac{1}{1} = \frac{5}{2} \cdot \frac{2}{2} - \frac{5}{2} \cdot \frac{1}{2}$$

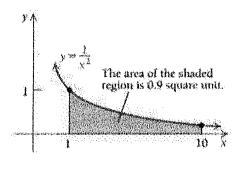
$$= \frac{29}{2} - \frac{5}{2} = \frac{15}{2}$$

c)
$$y = x^2$$
; [0,3]



$$A = \int x^{3} dx = \frac{1}{3}x^{3} = \frac{1}{3} \cdot 3^{3} - \frac{1}{3} \cdot 0^{3}$$
$$= \frac{27}{3} - 0 = \frac{97}{3}$$

d)
$$y = \frac{1}{x^2}$$
 over [1, 10].

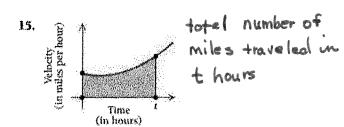


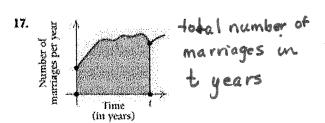
$$A = \int_{X^{2}}^{0} dx = \int_{X^{2}}^{0} dx = -X''$$

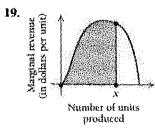
$$= (-10') - (-1'') = (-10) - (-1)$$

Section 4.3 Definite Integrals (Continued)

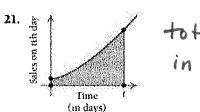
Example 3: Explain what the shaded area represents.







in dollars, when x units are produced



total sales in t days

If a function has areas both below and above the x-axis, the definite integral gives the net total area, or the difference between the sum of the areas above the x-axis and the sum of the areas below the x-axis.

- If the areas above and below the x-axis are the same, then the definite integral is

Example 4: Evaluate each integral. Then state whether the result indicates that there is more area above or below the x-axis or that the areas above and below the axis are equal.

$$\frac{0.5}{-0.5} = \frac{0.5}{0.5} = \frac{0.5}{10.5} = \frac{0.5$$

35. $\int_0^{1.5} (x-x^2) dx$

36.
$$\int_{0}^{2} (x^{2} - x) dx$$

$$\int_{2}^{2} x^{2} - x dx$$

$$\int_{3}^{2} x^{2} - x dx$$

$$\int_{3}^{2} x^{3} - \frac{1}{2}x^{2} dx$$

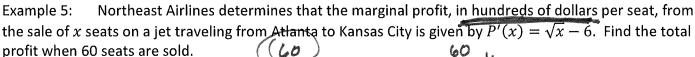
$$\left(\frac{8}{3} - \frac{4}{2}\right) - (0 - 0)$$

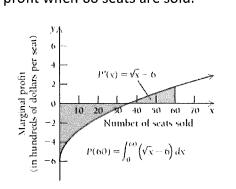
$$\frac{2}{3} \text{ more abov}$$

37.
$$\int_{-1}^{2} (x^{3} - 3x) dx$$

$$\int_{-2}^{2} x^{3} - 3x dx$$

$$\int_{-2}^{2} (1)^{4} - \frac{3}{2}(1)^{2} - (\frac{1}{4}(-1)^{4} - \frac{3}{2}(1)^{2})$$
Oabove * below equal equal





$$\int \sqrt{x} - 6 dx = \int x^{1/2} - 6 dx$$

$$=\frac{2}{3} \times \frac{3/2}{-6} \times \int_{0}^{60} = \left(\frac{2}{3} \cdot 60^{3/2} - 6 \cdot 60\right) - \left(0 - 0\right)$$

When 60 seats are sold, Profit is -5016.13 (loss) Kitchens-to-Please Contracting determines that the marginal cost, in dollars per square foot, Example 6: of installing x square feet of kitchen countertop is given by $C'(x) = 4\sqrt[3]{x}$.

a) Find the cost of installing 50 square feet of countertop.

b) Find the cost of installing an extra 14 square feet of countertop after 50 square feet have already been

$$\int_{50}^{64} 4x^{\frac{1}{3}} dx = 3x^{\frac{4}{3}} \int_{50}^{64} = 3.64^{\frac{4}{3}} - 3.50^{\frac{4}{3}} = $215.40$$

Melanie's Crafts estimate that its sales are growing continuously at a rate given Example 7: by $S'(t) = 20e^t$, where S'(t) is in dollars per day, on day t.

a) Find the accumulated sales for the first 5 days

b) Find the accumulated sales from the beginning of the 2nd day through the 5th day.

by
$$S'(t) = 20e^t$$
, where $S'(t)$ is in dollars per day, on day t .

a) Find the accumulated sales for the first 5 days

b) Find the accumulated sales from the beginning of the 2^{nd} day through the 5^{th} day.

a) $S = 20e^t + 1 = 20e^t +$