Section 6.2 Partial Derivatives

Notation $\quad \frac{\partial z}{\partial x} \quad \frac{\partial f}{\partial x} \quad f_{x} \quad$ all mean partial derivative with respect to x When you are taking a partial derivative, consider the other variables as fixed constants

Example 1: Consider the function $z=f(x, y)=x^{2} y^{3}+x y+4 y^{2}$
a. Find $\frac{\partial z}{\partial x}$, the partial derivative of z with respect to x and consider y as a fixed constant.
b. Find $\frac{\partial z}{\partial y^{\prime}}$ the partial derivative of z with respect to y and consider x as a fixed constant.

Example 2: For $w=x^{2}-x y+y^{2}+2 y z+2 z^{2}+z$, find the following.
a. $\frac{\partial w}{\partial x}$
b. $\frac{\partial w}{\partial y}$
c. $\frac{\partial w}{\partial z}$

Example 3: For $f(x, y)=3 x^{2} y+x y^{2}$, find $f_{x}(x, y)$ at $(2,-3)$.

Example 4: For $f(x, y)=e^{x y}+y \ln x$, find f_{x} and f_{y}.

Example 5: For $f(x, y)=\sqrt{x^{2}-y^{2}}$, find $f_{y}(-3,-2)$

Notation $\quad \frac{\partial z}{\partial x} \quad \frac{\partial f}{\partial x} \quad f_{x} \quad$ all mean partial derivative with respect to x
When you are taking a partial derivative, consider the other variables as fixed constants

Example 1: Consider the function $z=f(x, y)=x^{2} y^{3}+x y+4 y^{2}$
a. Find $\frac{\partial z}{\partial x}$, the partial derivative of z with respect to x and consider y as a fixed constant.

$$
\begin{aligned}
& z=x^{2} y^{3}+x y+4 y^{2} \\
& \frac{\partial z}{\partial x}=y^{3} \cdot 2 x+y \cdot 1+0=2 x y^{3}+y
\end{aligned}
$$

b. Find $\frac{\partial z}{\partial y}$, the partial derivative of z with respect to y and consider x as a fixed constant.

$$
\begin{aligned}
& z=x^{2} y^{3}+x y+4 y^{2} \\
& \frac{d z}{d y}=x^{2} \cdot 3 y^{2}+x \cdot 1+8 y=3 x^{2} y^{2}+x+8 y
\end{aligned}
$$

Example 2: For $w=x^{2}-x y+y^{2}+2 y z+2 z^{2}+z$, find the following.

$$
\begin{aligned}
& \text { a. } \frac{\partial w}{\partial x}=2 x-y \cdot 1+0+0+0+0=2 x-y \\
& \text { b. } \frac{\partial w}{\partial y}=0-x \cdot 1+2 y+2 z \cdot 1+0+0=-x+2 y+2 z \\
& \text { c. } \frac{\partial w}{\partial z}=0-0+0+2 y \cdot 1+4 z+1=2 y+4 z+1
\end{aligned}
$$

Example 3: For $f(x, y)=3 x^{2} y+x y^{2}$, find $f_{x}(x, y)$ at $(2,-3)$.

$$
\begin{aligned}
& f_{x}=3 y \cdot 2 x+y^{2} \cdot 1=6 x y+y^{2} \\
& f_{x}(2,-3)=6 \cdot 2 \cdot(-3)+(-3)^{2}=-36+9=-27
\end{aligned}
$$

Example 4: For $f(x, y)=e^{x y}+y \ln x$, find f_{x} and f_{y}.

$$
\begin{aligned}
& f_{x}=e^{x y} \cdot y+y \cdot \frac{1}{x}=y e^{x y}+\frac{y}{x} \\
& f_{y}=e^{x y} \cdot x+\ln x \cdot 1=x e^{x y}+\ln x
\end{aligned}
$$

Example 5: For $f(x, y)=\sqrt{x^{2}-y^{2}}$, find $f_{y}(-3,-2)$

$$
\begin{aligned}
& f(x, y)=\left(x^{2}-y^{2}\right)^{1 / 2} \\
& f_{y}=\frac{1}{2}\left(x^{2}-y^{2}\right)^{-1 / 2}(0-2 y)=-y\left(x^{2}-y^{2}\right)^{-1 / 2}=\frac{-y}{\sqrt{x^{2}-y^{2}}} \\
& f_{y}(-3,-2)=\frac{-(-2)}{\sqrt{(-3)^{2}-(-2)^{2}}}=\frac{2}{\sqrt{9-4}}=\frac{2}{\sqrt{5}}
\end{aligned}
$$

